
UNIVERSITAT POLITÈCNICA DE CATALUNYA

MASTER THESIS

Ambient Occlusion on Mobile:
An Empirical Comparison

Author:

Marc Sunet

Supervisors:

Pere-Pau Vázquez

A thesis submitted in fulfilment of the requirements

for the degree of Master in Innovation and Research in Informatics

in the

Facultat d’Informàtica de Barcelona
Department of Computer Science

January 13, 2018

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Abstract

Facultat d’Informàtica de Barcelona

Department of Computer Science

Master in Innovation and Research in Informatics

Ambient Occlusion on Mobile:

An Empirical Comparison

by Marc Sunet

Screen space ambient occlusion is a popular dynamic global illumination technique

that has seen widespread adoption in PC computer games and other computer graph-

ics applications due to its simplicity, scalability, and ability to be integrated with other

techniques. Mobile platforms, however, have traditionally been unable to run screen

space ambient occlusion and other global illumination techniques in real-time, forcing

developers to bake most of the illumination as a consequence. On the other hand, mo-

bile devices are evolving very rapidly, and mobile GPUs deliver ever more stunning

results with every generation. In this thesis, we study the feasibility of screen space

ambient occlusion on a range of devices. We implement several of the most popular

techniques and propose two rendering pipelines to support them, as well a mobile-

friendly algorithm to approximate ambient occlusion and a modification that can be

applied on any of the techniques to speed up their computation times. Our findings

suggest that screen space ambient occlusion is indeed feasible on middle- to high-end

devices, with frame rates ranging from 20 to 60+ frames per second depending on the

algorithm and device used. Given the history and trend of the evolution of mobile

GPUs, it seems to be only a matter of time before screen space ambient occlusion and

other global illumination techniques become standard in the mobile domain.

i

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Abstract

Facultat d’Informàtica de Barcelona

Department of Computer Science

Master in Innovation and Research in Informatics

Ambient Occlusion on Mobile:

An Empirical Comparison

by Marc Sunet

Screen space ambient occlusion és una popular tècnica d’il·luminació global dinàmica

que ha sigut adoptada per una gran quantitat de jocs PC i altres aplicacions de gràfics

per computador degut a la seva senzillesa, escalabilitat i habilitat de ser integrada amb

altres tècniques. Les plataformes mòbils, no obstant, han sigut tradicionalment inca-

paçes de calcular screen space ambient occlusion i altres tècniques d’il·luminació global

en temps real, forçant als desenvolupadors a pre-calcular gran part de la il·luminació

com a conseqüència. Per altra banda, els dispositius mòbils estan evolucionant molt

ràpidament, i les GPUs mòbils se superen l’una a l’altra generació rere generació. En

aquesta tesi, estudiem la factibilitat de la implementació de screen space ambient occlu-

sion per a mòbils en una varietat de dispositius. Implementem algunes de les tècniques

més populars i proposem dos pipelines de rendering per suportar-les, a més d’una tèc-

nica òptima per a dispositius mòbils per aproximar la oclusió ambient i una modifi-

cació aplicable a totes lès tècniques per millorar el seu rendiment. Els nostres resultats

suggereixen que la tècnica de screen space ambient occlusion és factible en dispositius

de gamma mitja-alta, obtenint frame rates de 20-60+ frames per segon dependent de

l’algorisme i dispositiu utilitzats. Donada la història i l’evolució de les GPUs mòbils,

creiem que només es qüestió de temps que tècniques d’iluminació global com screen

space ambient occlusion s’estandarditzin en l’espai mòbil.

ii

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Abstract

Facultat d’Informàtica de Barcelona

Department of Computer Science

Master in Innovation and Research in Informatics

Ambient Occlusion on Mobile:

An Empirical Comparison

by Marc Sunet

Screen space ambient occlusion es una popular técnica de iluminación global dinámica

que ha sido adoptada por una gran cantidad de juegos PC y otras aplicaciones de grá-

ficos por computador debido a su sencillez, escalabilidad y habilidad de ser integrada

con otras técnicas. Los dispositivos móviles, sin embargo, han sido tradicionalmente

incapaces de calcular screen space ambient occlusion y otras técnicas de iluminación

global en tiempo real, obligando a los desarrolladores a pre-calcular gran parte de la

iluminación como consecuencia. Por otro lado, los dispositivos móviles están evolu-

cionando muy rápidamente, y las GPUs móviles se superan una a la otra generación

tras generación. En esta tesis, estudiamos la factiblidad de la implementación de screen

space ambient occlusion para móviles en una variedad de dispositivos. Implementa-

mos algunas de las técnicas más populares i proponemos dos pipelines de rendering

para soportarlas, además de una técnica óptima para dispositivos móviles para aproxi-

mar la oclusión ambiente y una modificación aplicable a todas las técnicas para mejorar

su rendimiento. Nuestros resultados sugieren que la técnica de screen space ambient

occlusion es factible en dispositivos de gama media-alta, obteniendo frame rates de 20-

60+ frames per segundo dependiendo del algoritmo y dispositivo utilizados. Dada la

historia y la evolución de las GPUs móviles, creemos que sólo es cuestión de tiempo

que técnicas de iluminación global como screen space ambient occlusion se estandari-

cen en el espacio móvil.

iii

Acknowledgements

I would like to thank my supervisor Pere-Pau Vázquez and my girlfriend Nensi for

their guidance and unconditional support throughout the development of this thesis.

iv

Contents

Abstract i

Resum ii

Resumen iii

Acknowledgements iv

1 Introduction 1

2 Background 3

2.1 Introduction to Ambient Occlusion . 3

2.2 The Rendering Equation . 5

2.3 From the Rendering Equation to Ambient Occlusion 7

2.3.1 Direct Lighting . 7

2.3.2 Ambient Light . 8

2.3.3 Ambient Occlusion . 9

2.3.4 Ambient Obscurance . 11

2.3.5 Practical Considerations . 11

2.4 Real-Time Ambient Occlusion Methods 12

2.4.1 Baked Ambient Occlusion . 12

2.4.2 Screen Space Ambient Occlusion 13

2.4.3 Geometry-based Ambient Occlusion 15

2.4.4 Volume-based Ambient Occlusion 15

2.5 Mobile GPU Architecture: Tile-Based Deferred Rendering 16

2.5.1 Immediate Mode Rendering . 17

2.5.2 Tile-Based Deferred Rendering . 17

2.5.3 Performance Guidelines . 19

3 Screen Space Ambient Occlusion 20

3.1 Screen Space Ambient Occlusion . 20

3.1.1 Near-field and Far-field Ambient Occlusion 21

3.1.2 Banding, Noise and Blur . 22

3.1.3 Popping . 23

3.1.4 Flickering . 23

3.1.5 Robustness . 23

v

3.1.6 Scalability . 24

3.2 Screen Space Ambient Occlusion Techniques 24

3.2.1 Image Enhancement by Unsharp Masking the Depth Buffer . . . 24

3.2.2 Crytek Ambient Occlusion . 25

3.2.3 Image-Space Horizon-Based Ambient Occlusion 27

3.2.4 Starcraft 2 Ambient Occlusion . 28

3.2.5 Screen Space Ambient Occlusion using Temporal Coherence . . . 30

3.2.6 Alchemy Ambient Obscurance . 31

3.2.7 Separable Approximation of Ambient Occlusion 33

3.3 Blur Techniques . 33

3.3.1 Bilateral Filter . 34

3.3.2 Separable Blur . 37

4 Implementation on Mobile 39

4.1 Characteristics and Limitations of Mobile GPUs 39

4.1.1 Limited Memory Bandwidth . 40

4.1.2 Limited Compute Power . 40

4.1.3 High Screen Resolutions . 41

4.1.4 Tile-Based Deferred Rendering . 41

4.2 Rendering Pipeline . 42

4.2.1 ND-buffer Pipeline . 42

4.2.2 G-buffer Pipeline . 44

4.2.3 Pipeline Feature Matrix . 46

4.2.4 Our Pipeline . 47

4.3 Random Sampling . 48

4.3.1 Disc Sampling . 49

4.3.2 Hemisphere Sampling . 50

4.3.3 Under-sampling and Per-Pixel Randomisation 51

4.3.4 Blur . 52

4.4 Crytek Ambient Occlusion . 52

4.5 Starcraft 2 Ambient Occlusion . 53

4.6 Alchemy Ambient Obscurance . 55

4.7 Horizon-Based Ambient Occlusion . 56

4.8 Unsharp Mask . 57

4.9 Home-Brewed Ambient Occlusion . 58

4.10 Progressive Ambient Occlusion . 60

5 Results 62

5.1 Test Setup . 62

5.2 Forward and Deferred Pipelines . 63

5.3 Depth Precision . 65

5.4 View Space Position Reconstruction . 67

vi

5.5 Saving View Space Position Instead of Depth 68

5.6 Saving Normals as RG . 70

5.7 Bilateral Filter and Separable Blur . 71

5.8 Runtime Performance of Ambient Occlusion Methods 73

5.9 Progressive Ambient Occlusion . 77

5.10 Qualitative Results and Comparison . 79

5.10.1 Crytek Ambient Occlusion . 79

5.10.2 Starcraft 2 Ambient Occlusion . 79

5.10.3 Alchemy Ambient Obscurance . 80

5.10.4 Horizon-Based Ambient Occlusion 80

5.10.5 Home-Brewed Ambient Occlusion 80

5.10.6 Unsharp Masking of the Depth Buffer 80

6 Conclusions 83

6.1 Future Work . 84

A Ambient Occlusion Shaders 85

B Blur Filters 96

Bibliography 99

vii

List of Figures

2.1 Ambient occlusion in an example scene. Source: Game Informer. 3

2.2 Ambient occlusion versus a constant ambient term. Source: PRTDemo,

Microsoft SDK, November 2007 . 4

2.3 Enhancement of a complex botanical object using depth darkening [TL06]. 4

2.4 A scene with and without 3D unsharp masking enhancement [Rit+08]. . 5

2.5 Path tracing with Brigade 3. Source: http://www.evermotion.org. . 5

2.6 Light reflected at a surface point p. Source: Wikipedia. 6

2.7 The BRDF describes how much light is reflected off a point in one direc-

tion due to light incoming in another direction. Source: Wikipedia. . . . 6

2.8 An example scene using direct lighting only. Source: [PF05]. 8

2.9 An example scene using 0, 1, and 2 bounces of lighting. Source: [PF05]. . 8

2.10 A scene illuminated using ambient light. 9

2.11 Ray-traced ambient occlusion using Mental Ray. Source: http://artasmedia.

com. 13

2.12 Screen space ambient occlusion in Assassin’s Creed: Black Flag. Source:

https://developer.nvidia.com. 13

2.13 The depth buffer as an approximation of the 3D geometry of a scene.

Source: [Gre09]. 14

2.14 Noise produced due to under-sampling in screen space ambient occlu-

sion, then removed using a blur filter. Source: [Gre09]. 15

2.15 Approximating the 3D geometry of the scene with spheres. Source: [SA07]. 16

2.16 Ambient occlusion fields. Source: [KL05a]. 16

2.17 Screen divided into tiles in tile-based deferred rendering. Source: [KS11]. 18

3.1 The depth buffer as an approximation of the 3D geometry of a scene.

Source: [Gre09] . 20

3.2 Unsharp masking the depth buffer produces a near-field ambient occlu-

sion. Image from Mike Pan. http://mikepan.com/ 21

3.3 Line-sweep ambient obscurance is a great example of far-field ambient

obscurance. Source: [Tim13] . 21

3.4 Banding, noise and blur in our implementation. Random sampling fixes

banding artifacts but introduces noise. The noise is blurred away in a

post-process step, resulting in the rightmost image. 22

3.5 Unsharp masking of the depth buffer. Source: [LCD06]. 24

3.6 Screen space ambient occlusion in Crysis. Source: Wikipedia. 25

viii

3.7 Sampling kernel in Crysis ambient occlusion. Samples are taken within

a hemisphere centred at the point being shaded. As a consequence, flat

surfaces appear gray, since half of the samples are occluded for such

surfaces. Source: [Aal13]. 26

3.8 Horizon-based ambient occlusion. Source: [BSD08]. 27

3.9 Horizon-based ambient occlusion on the dragon model. Source: [BSD08]. 28

3.10 Screen space ambient occlusion in Starcraft 2. Source: [FM08]. 29

3.11 Sampling kernel in Starcraft 2 ambient occlusion. Samples are taken

within a normal-oriented hemisphere centred at the point being shaded.

Unlike Crysis ambient occlusion, flat surfaces are now shaded correctly

and appear white. Source: [Aal13]. 29

3.12 Falloff function used in Starcraft 2 ambient occlusion. Source: [FM08]. . 30

3.13 Temporal screen space ambient occlusion. Source: [MSW10]. 31

3.14 Alchemy ambient occlusion in an example scene. Source: [McG+11]. . . 32

3.15 Sampling kernel used in Alchemy ambient obscurance. Samples are

taken from a normal-oriented hemisphere centred at the point being

shaded. Source: [Aal13]. 32

3.16 Examples of separable ambient occlusion. Source: [Hua+11]. 33

3.17 Sampling patterns in separable ambient occlusion. Ambient occlusion is

evaluated for every pixel along orthogonal axes. To improve quality, the

orthogonal axes are randomly rotated per pixel. Source: [Hua+11]. . . . 34

3.18 An example Gaussian kernel. Note how the contribution of neighbours

is maximum at the center and quickly decreases as we move away from

it. Source: [Syl07] . 35

3.19 An example Gaussian function. Note how the contribution of neigh-

bours is maximum at the center and quickly decreases as we move away

from it. Source: [Syl07] . 35

3.20 An example of Gaussian blur applied to an image. Left: input, right:

output. Source: [Syl07] . 36

3.21 An example of Gaussian blur applied to an image. Left: input, right:

output. Source: [Syl07] . 36

3.22 A bilateral filter applied to the output of an ambient occlusion shader to

remove the noise due to random sampling. 37

4.1 Ambient occlusion ND-buffer rendering pipeline. The scene is rendered

once to generate an ND-buffer. An ambient occlusion is invoked in a

second stage to generate an ambient occlusion texture from this buffer.

The scene is then rendered in a second and final forward pass where the

scene’s illumination is computed and the previously generated ambient

occlusion texture is used to modulate ambient light. 42

ix

4.2 Ambient occlusion G-buffer rendering pipeline. The scene is rendered

once to generate a G-buffer containing depth/position, normals and albedo.

The depth/position and normal textures are used in a second stage to

compute ambient occlusion. The resulting ambient occlusion texture

and the albedo texture are used in a final compositing pass to compute

the illumination at every pixel. 45

4.3 Poisson disc with 64 samples. 49

4.4 Poisson disc with 8 samples. 50

4.5 An example cosine-weighted hemisphere distribution. The figure shows

the hemispherical samples projected onto the plane. 50

4.6 Banding artifacts in Starcraft 2 ambient occlusion due to undersampling. 51

4.7 Noise due to random (under)sampling in Starcraft 2 ambient occlusion. 51

4.8 Blur in Starcraft 2 ambient occlusion. 52

4.9 Crytek ambient occlusion with and without range check. 53

4.10 Crytek sample kernel. 53

4.11 Crytek sample kernel with per-pixel rotations. 53

4.12 Our implementation of Starcraft 2 ambient occlusion. 54

4.13 Starcraft 2 sample kernel. 54

4.14 Stracraft sample kernel with per-pixel rotations. 54

4.15 Our implementation of Alchemy ambient obscurance. 55

4.16 Alchemy sample kernel. 55

4.17 Alchemy sample kernel with per-pixel rotations. 56

4.18 Our implementation of horizon-based ambient occlusion. 56

4.19 Horizon-based ambient occlusion sample kernel. 56

4.20 Horizon-based ambient occlusion sample kernel with per-pixel rotations. 57

4.21 Scene rendered with and without unsharp masking of the depth buffer. . 58

4.22 Home-brewed ambient occlusion. 58

4.23 Home-brewed sample kernel. 59

4.24 Home-brewed sample kernel with per-pixel rotations. 59

4.25 Schematics of progressive ambient occlusion. An ambient occlusion tex-

ture is computed using half of the samples in a given frame, and the

result averaged with that of the previous frame. The average is then

used to compute the illumination of the current frame. Note that we do

not average the current texture with the average of the previous frame,

but with the texture computed using the other half of the samples in the

previous frame. 60

5.1 Our test scene. 62

5.2 Performance comparison of the ND-buffer and G-buffer pipelines. Gen-

erating an ND-buffer is faster than generating a G-buffer, but the cost

of the second forward pass in the ND-buffer pipeline shifts the balance

towards the G-buffer pipeline. 65

x

5.3 Alchemy with different depth buffer precisions. 66

5.4 Time spent on different parts of the pipeline as well as overall frame time

using 16-bit and 32-bit depth buffers. (less is better). 67

5.5 View-space position reconstruction using (A) the inverse of the projec-

tion matrix and (B) similar triangles. The quality difference is negligible. 68

5.6 Performance comparison of depth reconstruction using similar triangles

and projection inverse (less is better). The left figure shows ambient oc-

clusion time. The right figure shows overall frame time. Reconstruction

using similar triangles is slightly faster than the projection inverse method. 68

5.7 Frame times of ambient occlusion methods using depth and position

buffers. Using a depth buffer is faster for all shaders except for the Star-

craft 2 method. 69

5.9 Alchemy shader performance using a (A) RGB normals (B) RG normals. 71

5.10 Quality comparison between bilateral filter (A,C) and separable blur (B,D).

Although a difference does exist, we find it to be negligible, especially

on small form factors such as mobile. 72

5.11 Performance measurements of bilateral filter and separable blur in the

Alchemy ambient obscurance algorithm (less is better). The separable

blur offers a considerable boost in performance on our target platform. . 72

5.12 Shader time of each of the ambient occlusion methods (Nexus 7, less is

better). 73

5.13 Frame time of each of the ambient occlusion methods (Nexus 7, less is

better). 73

5.14 Shader time of each of the ambient occlusion methods (Nexus 5, less is

better). 74

5.15 Frame time of each of the ambient occlusion methods (Nexus 5, less is

better). 75

5.16 Shader time of each of the ambient occlusion methods (NVIDIA Shield

K1, less is better). 75

5.17 Frame time of each of the ambient occlusion methods (NVIDIA Shield

K1, less is better). 75

5.18 Frame time of each of the ambient occlusion methods with and without

the progressive approach (less is better). 78

5.19 Shader time of each of the ambient occlusion methods with and without

the progressive approach (less is better). 78

5.8 Profiling of each of the ambient occlusion methods using depth and po-

sition buffers. 81

5.20 Performance of ambient occlusion methods with the progressive approach.

Averaging the two partial ambient occlusion computation has a minimal

impact on performance in all algorithms. 82

xi

Chapter 1

Introduction

Ambient occlusion (AO) is a shading technique that approximates global illumination

by determining how exposed a point on a surface is to ambient lighting. Screen space

ambient occlusion approximates the true ambient occlusion in a scene in a post-process

rendering step. Since this form of ambient occlusion operates in screen space, it is

independent from the scene’s geometry and is therefore faster to compute. In addition,

screen space ambient occlusion is relatively simple to implement, and can be integrated

into a wide variety of computer graphics applications.

An application domain that has seen a widespread adoption of screen space ambient

occlusion methods is that of 3D video games. Screen space ambient occlusion tech-

niques can be computed in real-time using modern graphics cards, and often consume

just a fraction of a game’s time budget, leaving space for other stages of the rendering

pipeline and the other subsystems involved in such applications. In addition, screen

space ambient occlusion can be combined with other global illumination effects, often

complementing them by adding high-frequency, subtle shading details in the scene.

For these reasons, screen ambient occlusion remains a popular technique in today’s

games.

While screen space ambient occlusion is heavily deployed in computer titles, its use

in the mobile space has been very limited. Though relatively powerful, most mo-

bile graphics chips are still considerably behind desktop ones in both computational

power and memory bandwidth, especially those found in the average low- to middle-

end phones. Computing full global illumination effects in real-time and at reasonable

framerates in these devices is expensive and unpractical, and as a consequence, game

engines often bake a game’s illumination when targeting mobile platforms to provide

the gamer with a smooth experience. Techniques such as screen space ambient occlu-

sion are therefore rarely used in the mobile domain.

Although still behind desktop GPUs, mobile graphics chips are evolving at an unrested

pace. The Adreno 330 GPU, powering Google’s Nexus 5 (October 2013), is a fully com-

patible OpenGL ES 3.0 device featuring 86-97 GFLOPS1. The more recent Adreno 420,

1https://en.wikipedia.org/wiki/Adreno

1

Chapter 1. Introduction 2

on the other hand, is a 3.1 compatible device found in Google’s Nexus 6 (October 2014)

and offering 144-172 GFLOPS. On the higher end, NVIDIA’s Tegra K1, powering the

NVIDIA Shield K1 (December 2015), features 192 CUDA cores at 365 GFLOPS2. Judg-

ing by the dates and numbers and the high demand of mobile devices in the market,

we believe it is only a matter of time that these middle- to high-end GPUs take over

and that low-end ones are phased out. In fact, according to Unity’s hardware statistics

page, ES 3.0 compatible devices already make up 44.9% of the user base at the time of

writing3.

The purpose of this thesis is to evaluate and study the performance and runtime char-

acteristics of different screen space ambient occlusion techniques on middle to high-

end mobile devices. We implement several of the most popular techniques and modify

them to better adapt them to mobile. We benchmark them and compare their per-

formance. We identify bottlenecks in the rendering pipeline and optimise them to

develop a usable framework in which different ambient occlusion techniques can be

implemented.

In chapter 2, we introduce ambient occlusion and the mathematical foundations on

which it is based. We then present a brief overview of different real-time ambient oc-

clusion methods, including screen space ambient occlusion, and end the chapter with

a discussion on mobile GPU architecture that will be helpful in future chapters.

Chapter 3 is exclusively devoted to screen space ambient occlusion. In the first half, we

continue from the brief introduction in the previous chapter and discuss screen space

techniques in greater detail. In the second half, we present the previous work our study

is based on.

In chapter 4, we cover our implementation of screen space ambient occlusion for mo-

bile. We discuss our rendering pipeline and our implementation of the different ambi-

ent occlusion techniques presented in the previous chapter. For convenience, we have

written this chapter so that it can be used as a reference. That is, this chapter only

explains the how; the why is deferred to the following chapter.

Chapter 5 shows our results. Here, we show the different experiments we performed

during the development of our project and justify the decisions taken. This chapter

complements the previous one by providing the why in our implementation. The chap-

ter concludes with a performance and a qualitative comparison of the ambient occlu-

sion techniques we have implemented.

Finally, in chapter 6, we state our conclusions and discuss potential future work.

2http://www.anandtech.com/show/7622/nvidia-tegra-k1/3
3http://hwstats.unity3d.com/mobile/gpu.html

Chapter 2

Background

This chapter introduces the necessary background needed to follow the rest of this doc-

ument. An intuitive description of ambient occlusion is first presented, followed by its

mathematical derivation and an overview of the different real-time ambient occlusion

methods that are in use today.

2.1 Introduction to Ambient Occlusion

Ambient occlusion is a shading technique that shades points as a function of their visi-

bility. Points that are occluded by nearby geometry are shaded in a dark shade of gray,

whereas points that are relatively unoccluded appear in a lighter shade of gray. An

example of a scene rendered with ambient occlusion can be seen in figure 2.1.

FIGURE 2.1: Ambient occlusion in an example scene.
Source: Game Informer.

The advantage of using ambient occlusion is best understood when comparing a scene

with and without ambient occlusion side by side. Figure 2.2 presents one such com-

parison. On the left, the scene is rendered using a constant ambient term, which is

very common in lighting models such as Blinn-Phong or Cook-Torrance. As a conse-

quence, the object appears flat, making it impossible for the viewer to appreciate the

3

Chapter 2. Background 4

object’s 3D features. In contrast, these features are clearly visible in the right figure,

which shows the same object rendered with ambient occlusion. Since ambient occlu-

sion shades occluded points darker than unoccluded points, cracks and crevices appear

darker, revealing the object’s features and depth complexity.

FIGURE 2.2: Ambient occlusion versus a constant ambient term.
Source: PRTDemo, Microsoft SDK, November 2007

At this point, one could think of ambient occlusion as a depth cue or depth-enhancing

technique, and this is in fact an intuitive way to understand it. Ambient occlusion is not

the first depth-enhancing technique, however, as earlier methods had been proposed.

[TL06] presents a technique that produces an unsharp mask of the depth buffer to en-

hance depth discontinuities, resulting in a darkening of these points in the image and

making it easier for the viewer to tell objects apart and to better understand the depth

complexity of individual objects. This technique is illustrated in figure 4.21. [Rit+08]

is a similar technique that also enhances depth discontinuities to make object features

more prominent, as illustrated in figure 2.4.

FIGURE 2.3: Enhancement of a complex botanical object using depth
darkening [TL06].

What sets ambient occlusion apart from those techniques is that ambient occlusion is

based on the physical behaviour of light. For this reason, and although an intuitive

understanding is enough for many practical purposes, it is helpful to understand the

mathematical derivation of ambient occlusion. This will give us further insight into the

concept and will allow us to better understand and compare different ambient occlu-

sion techniques.

Chapter 2. Background 5

FIGURE 2.4: A scene with and without 3D unsharp masking enhance-
ment [Rit+08].

2.2 The Rendering Equation

To understand the mathematical foundations of ambient occlusion, we first need a basic

understanding of how light behaves and how objects reflect light.

The interaction between light and objects is modelled by what is known as the render-

ing equation. In other words, the rendering equation describes how light reflects off a

surface. Informally, we could say that if the rendering equation were to be fully solved

for every point in a scene, one would produce images that would be indistinguishable

from real life. Some computer graphics techniques approximate the rendering equa-

tion with great detail, producing stunning images such as the one in figure 2.5. In this

sense, we can think of the rendering equation as the superset of all computer graphics

techniques. Or in other words, every computer graphics technique is a subset of the

effects described by the rendering equation.

FIGURE 2.5: Path tracing with Brigade 3.
Source: http://www.evermotion.org.

The rendering equation does not have an analytical solution, however, so one can only

approximate it in practice. The degree to which the rendering equation is approximated

determines how realistic the final rendering is, with better approximations producing

more realistic images. In this sense, every computer graphics technique can be un-

derstood as an approximation of the rendering equation, and ambient occlusion is no

exception. Understanding the rendering equation, then, is essential to fully understand

computer graphics techniques such as ambient occlusion.

Chapter 2. Background 6

The rendering equation can be derived in an intuitive and straightforward manner that

is enough for our purposes. Consider the scene in figure 2.6. Here, the viewer sees a

point p on a given surface, and the goal of a rendering system is to compute the light

that is reflected off of p in the outgoing direction ωo towards the viewer. The light

reflected off of p and towards the viewer is a function of two components: the amount

of light incident at p from every incoming direction ωi, as well as the properties of the

surface, which describe how the incoming light is reflected.

FIGURE 2.6: Light reflected at a surface point p. Source: Wikipedia.

The surface properties are often described with what is known as a bidirectional re-

flectance distribution function, or BRDF for short. The BRDF can be understood as the

answer to one simple question: how much light is reflected off a point in one direction

due to light incoming in another direction? This is illustrated in figure 2.7. The BRDF

is therefore a function of three parameters: the surface point p, the incoming light di-

rection ωi, and the outgoing light direction ωo, and is commonly denoted f(p, ωo, ωi).

FIGURE 2.7: The BRDF describes how much light is reflected off a point
in one direction due to light incoming in another direction. Source:

Wikipedia.

If we take every beam of light incident at p in direction ωi, multiply this quantity by the

BRDF f(p, ωo, ωi) and add everything up, we obtain the light reflected at p in direction

ωo. This process is exactly what is described by the rendering equation:

Lo(p, ωo) =

∫

Ω
f(p, ωo, ωi)Li(p, ωi) cos θi dωi (2.1)

Chapter 2. Background 7

In the above equation, Lo(p, ωo) denotes the light reflected at p in direction ωo. This

quantity is essentially the sum of the incident light Li(p, ωi) in direction ωi multiplied

by the BRDF f(p, ωo, ωi), for every ωi in the normal-oriented hemisphere, where ωi

is a differential solid angle in this hemisphere (an infinitesimally thin cone of incident

directions). This product is attenuated by cos θ, which is the cosine of the angle between

the surface normal and the direction of incoming light ωi. This cosine factor is due to

Lambert’s cosine law, which essentially states that light striking the surface at normal

incidence has a stronger influence on the reflected light than light coming at grazing

angles, and this effect is modelled by taking the cosine of the angle.

Careful observation of the above equation reveals a subtle problem when it comes to

computing the light reflected off a surface: Lo is a function of Li as expressed by the

equation, but Li is also in fact a function of Lo: some of the light that is reflected off a

surface bounces around the scene and eventually hits back that same surface. This is es-

sentially where the complexity of the equation lies, and in practice, rendering systems

approximate these light bounces using different methods to achieve different results.

Methods that result in better approximations generally result in higher visual fidelity,

but are more costly to compute. A rendering system must find a balance between visual

quality and performance.

2.3 From the Rendering Equation to Ambient Occlusion

Ambient occlusion can be understood as an approximation to the rendering equation.

Let us see how to derive the mathematical definition of ambient occlusion, starting

with a simple approximation and adding more complexity to reach our goal.

2.3.1 Direct Lighting

Perhaps the simplest approach when it comes to approximating the rendering equa-

tion (conceptually) is to simply ignore indirect lighting, or light bouncing off from one

surface to another, and to compute direct lighting only, or light coming directly from a

light source. This produces images like the one in figure 2.8, where only points that are

visible from the light source are shaded, and those from which the light source is not

reachable appear pitch black.

This method is a very crude approximation of the rendering equation, and the visual

result is unacceptable for most practical purposes. In practice, we need to approxi-

mate indirect lighting for results to be visually plausible, as illustrated in figure 2.9.

This figure shows the same scene rendered with 0, 1, and 2 bounces of indirect light.

The leftmost image is the same as in figure 2.8: zero bounces of light correspond to

direct lighting. The image in the middle adds one bounce of indirect lighting. Notice

Chapter 2. Background 8

FIGURE 2.8: An example scene using direct lighting only. Source: [PF05].

how points in shadow are no longer pitch black, but instead receive illumination from

nearby objects. The rightmost image adds another bounce of light, for a total of two

bounces. The difference between the middle and rightmost image is subtle and hard to

appreciate on print, but in the rightmost image, the shadow cast by the blue box onto

the wall takes a stronger shade of blue and appears brighter.

FIGURE 2.9: An example scene using 0, 1, and 2 bounces of lighting.
Source: [PF05].

Adding an increasing number of bounces produces a better approximation of the ren-

dering equation, but becomes computationally more expensive. Even though modern

rendering systems can compute one or two bounces of indirect light in real time, these

systems had traditionally offered approximations to the rendering equation that were

cheaper to compute and offered visually plausible results.

2.3.2 Ambient Light

A traditional and computationally-efficient, albeit rough method of approximating in-

direct illumination is to replace the computation altogether with a constant. This con-

stant term is referred to as ambient light in shading models such as Blinn-Phong or

Cook-Torrance. By using a constant, we assume that light reaches every point in ev-

ery direction and with equal intensity, ignoring the point’s surrounding objects. This

results in images such as the one in figure 2.10.

In figure 2.10, we can see how all points receive some light, be it from the light source

or from the artificial ambient light term. In contrast to figure 2.8, no point in this image

appears pitch black, rendering the image more visually appealing. Nevertheless, a

Chapter 2. Background 9

FIGURE 2.10: A scene illuminated using ambient light.

constant ambient term makes the scene appear dull and uninteresting, and it makes it

difficult for the viewer to appreciate the depth complexity of the scene. This is the exact

same problem ambient occlusion tries to solve.

2.3.3 Ambient Occlusion

Ambient occlusion can be seen as a form of indirect lighting that is halfway between

ambient light and true indirect illumination such as the one in figure 2.9. Instead of

using a constant ambient term, ambient occlusion produces an ambient term for every

point in the scene. This position-dependent value is a function of the point’s visibility,

and ambient occlusion makes two assumptions when computing this value.

The first assumption is that the surface is a perfect diffuse surface, that is, the surface

reflects light equally in all directions. In this case, the surface’s BRDF f(p, ωo, ωi) be-

comes a constant k, in which case it can be moved out of the integral in equation 2.1 to

yield the following expression:

Lo(p, ωo) = k

∫

Ω
Li(p, ωi) cos θi dωi (2.2)

The second assumption is that light potentially reaches a point p equally in all direc-

tions. In other words, the direction in which light actually reaches p becomes irrelevant,

and we assume that the intensity of light potentially reaching p is equal in all directions.

For this reason, ambient occlusion is said to be undirectional.

Notice the use of the word potentially above. Ambient occlusion does not simply add

the light contribution from all directions, as that would result in a constant ambient

light term. Instead, ambient occlusion takes into account the point’s visibility. For

every direction ωi in which light may potentially reach p, ambient occlusion determines

whether a ray in direction ωi hits another surface. If it does, the point p is said to be

Chapter 2. Background 10

occluded in direction ωi, in which case no light contribution in direction ωi is added.

On the other hand, if the ray does not intersect a surface, light is determined to reach

p in direction ωi, in which case this light contributes to the final value of reflected light

Lo. This verbose description is more succinctly expressed by the following equation:

Lo(p, ωo) = k

∫

Ω
V (p, ωi) cos θi dωi (2.3)

where

V (p, ωi) =

0 p occluded in direction ωi

1 otherwise

The difference between equations 2.3 and 2.2 is that the incoming light term Li(p, ωi) in

equation 2.2 has been replaced by a visibility function V (p, ωi). This visibility function

returns 0 if p is occluded in direction ωi and 1 otherwise. In this way, ambient occlusion

adds the light contribution in direction ωi only if p is unoccluded in this direction (there

is no other surface blocking light in direction ωi).

Finally, we derive the value of the constant k to arrive to the final ambient occlusion

equation. For convenience, we define ambient occlusion to be a value in the range

[0, 1]. For a completely unoccluded point, the visibility function V (p, ωi) is 1 for every

ωi, therefore:

Lo(punoccluded, ωo) = k

∫

Ω
V (punoccluded, ωi) cos θi dωi

= k

∫

Ω
cos θi dωi

= kπ

We want the ambient occlusion value for an unoccluded point to be 1, therefore

k =
1

π

and the final ambient occlusion equation becomes:

Lo(p, ωo) =
1

π

∫

Ω
V (p, ωi) cos θi dωi (2.4)

Chapter 2. Background 11

2.3.4 Ambient Obscurance

The above definition for ambient occlusion reveals a subtle problem. What is the value

of ambient occlusion for a closed scene? The answer is zero, or pitch black. This is

because every ray shot from every point p eventually hits another surface, in which

case V (p, ωi) is zero for all p and for all ωi.

The above problem has a very simple solution. Instead of using the visibility function

V (p, ωi), we compute the distance from p to the potential occluder in direction ωi, de-

noted d(p, ωi), and then apply a fall-off function ρ to this distance to yield an occlusion

value:

Lo(p, ωo) =
1

π

∫

Ω
ρ(d(p, ωi)) cos θi dωi (2.5)

This modified equation is the ambient obscurance equation. Ambient obscurance can be

therefore understood as a distance-limited form of ambient occlusion.

In practice, the fall-off function ρ in equation 2.5 typically cuts the occlusion value to

one when the distance is greater than a certain threshold, that is:

ρ(d) =

f(d) ∈ [0, 1] d < threshold

1 otherwise

The fall-off function ρ therefore serves three purposes. First, ρ makes ambient obscu-

rance work for closed scenes by yielding 1 for occluders that lie at a distance greater

than some threshold — the obscurance value is not pitch black in closed scenes unlike

ambient occlusion. Second, since ρ cuts the occlusion value to one for far away points,

the ambient obscurance of a given point becomes a relatively local computation. That

is to say, the ambient obscurance value is only a function of the point’s nearby geome-

try, which in turn translates to more efficient implementations in practice. Last, ρ gives

nearby occluders a greater occlusion value (a value closer to 0) than distant occluders.

2.3.5 Practical Considerations

Note that in many implementations, instead of computing Lp(p, ωo) by adding the in-

coming light in the unoccluded directions, the implementation will instead compute

an obscurance value AO from the directions in which incoming light is blocked, and

approximate Lp(p, ωo) ≈ 1 − AO. Consequently, the role of ρ(d) typically switches to

yield 0 instead of 1 for unoccluded points, and 1 instead of 0 for completely occluded

points.

Chapter 2. Background 12

Finally, it is important to note that in the literature, the terms ambient occlusion and

ambient obscurance are often used interchangeably to refer to the latter. This is because

ambient occlusion is of limited use in practice (since it is pitch black for closed scenes),

so the term ambient occlusion is used even though what is really being referred to is

ambient obscurance. We will follow this same convention for convenience, and use the

term ambient occlusion as a synonym for ambient obscurance throughout the rest of this

document.

2.4 Real-Time Ambient Occlusion Methods

As seen in the previous section, ambient occlusion is defined as an integral over the

normal-oriented hemisphere. Like the rendering equation, the ambient occlusion equa-

tion does not have a general analytical solution, so it must be approximated in practice.

The most often used method to approximate this equation is Monte Carlo integration.

In Monte Carlo integration, an integral is approximated by randomly sampling the

integrand and computing the average value of the results. Although ambient occlu-

sion methods differ in implementation, they all share this scheme and define three key

ingredients:

• A 3D representation of the scene.

• A sampling scheme.

• A fall-off function.

A 3D representation of the scene is needed to compute ray-object intersections. A sam-

pling scheme defines how the normal-oriented hemisphere is sampled to find potential

occluders. Finally, the fall-off function defines how the distance from the to-be-shaded

point to the occluder is used to yield an ambient occlusion value.

Let us proceed by exploring the different real-time ambient occlusion methods that are

commonly used in practice.

2.4.1 Baked Ambient Occlusion

The idea behind baked ambient occlusion is to pre-compute an ambient occlusion tex-

ture, or to bake the ambient occlusion of a scene into a texture, and to later apply the

texture at runtime. This method is real-time in the sense that once the ambient occlu-

sion texture is computed, applying it at runtime is as fast and simple as a texture fetch.

Since the ambient occlusion texture is computed offline, methods such as ray tracing

are often used, which yield the best results as can be seen in figure 2.11. However, the

most immediate downside of this approach is that it can only handle static scenes, since

Chapter 2. Background 13

the ambient occlusion computation is done offline. This method cannot therefore rep-

resent the ambient occlusion of moving characters or objects, making it rather limited

in applications such as games.

FIGURE 2.11: Ray-traced ambient occlusion using Mental Ray. Source:
http://artasmedia.com.

In baked ambient occlusion, the 3D representation of the scene is often a ray-scene

intersection acceleration data structure, such as a bounding volume hierarchy (BVH)

or kd-tree. The sampling scheme is simply a Monte Carlo integration of the ambient

occlusion equation using ray tracing, and the fall-off function can be any user-defined

function.

2.4.2 Screen Space Ambient Occlusion

Screen space ambient occlusion is a very popular technique, and is the technique that

we focus on in this study. As hinted by the name, this method works in screen space

and is independent from the number of triangles in the scene. This allows screen space

ambient occlusion to be computed in real-time using modern graphics cards and to

trivially handle dynamic scenes. As a consequence, screen space ambient occlusion has

become an attractive and widely used method in real-time applications such as games.

Figure 2.12 shows an example of this method in the game Assassin’s Creed: Black Flag.

FIGURE 2.12: Screen space ambient occlusion in Assassin’s Creed: Black
Flag. Source: https://developer.nvidia.com.

The main observation behind screen space ambient occlusion is that a pair of depth

and normal buffers, or ND-buffer for short, provides a coarse approximation of the 3D

Chapter 2. Background 14

geometry of the scene. This concept is illustrated in figure 3.1, where we see the pix-

els of the depth buffer approximating the scene’s geometry, represented with a smooth

curve. While this approximation is indeed very coarse, it is enough to provide a rela-

tively good estimate of the ambient occlusion in a scene.

FIGURE 2.13: The depth buffer as an approximation of the 3D geometry
of a scene. Source: [Gre09].

Since screen space ambient occlusion operates on an ND-buffer, the complexity of this

method depends solely on the resolution of these buffers and is independent of the

number of triangles in the scene. This is in contrast to other ambient occlusion tech-

niques, and is what makes this method so attractive and popular in many domains.

In addition, ambient occlusion is relatively low-frequency in most scenes, compared

to other effects such as specular reflections. For this reason, the ND-buffer is often

downscaled in practice, making this method even more efficient performance-wise.

The mechanics of screen space ambient occlusion are conceptually very simple. The

depth buffer is used to reconstruct the 3D position of a pixel, while the normal buffer

gives an approximation of the surface’s orientation. The ND-buffer is then stochas-

tically sampled at runtime around the pixel to find nearby occluders, and a fall-off

function determines the occlusion value for each sample. Finally, the occlusion values

for each sample are all averaged together to produce the final occlusion value for the

pixel.

In practice, however, screen space ambient occlusion reveals some complications. For

the algorithm to run in real-time, only a few number of samples can be gathered per

pixel, leading to under-sampling and producing noisy results like in figure 2.14a. To

combat this under-sampling, the resulting ambient occlusion texture is often blurred

in a post-process step to remove noise. Figure 2.14b shows the same scene as in figure

2.14a after the blur filter is applied.

Another limitation inherent to screen space ambient occlusion methods is due to the

fact that only geometry visible from the camera is considered. Since the input to this

set of algorithms is an ND-buffer, geometry that falls out of the ND-buffer is ignored.

While this may not produce many visible artifacts for a static image, the artifacts do

show up in the form of flickering or popping pixels when the camera is animated and

Chapter 2. Background 15

(A) Noise produced due to under-sampling. (B) Noise removed using a blur filter.

FIGURE 2.14: Noise produced due to under-sampling in screen space
ambient occlusion, then removed using a blur filter. Source: [Gre09].

pieces of geometry pop in and out of the ND-buffer. Some screen space techniques re-

sult in less noticeable popping than others, while a few go as far as handling it explicitly

in an attempt to improve the visual quality during animation.

2.4.3 Geometry-based Ambient Occlusion

Geometry-based ambient occlusion is the term we use to describe a family of ambi-

ent occlusion algorithms that use the 3D geometry of the scene to compute ambient

occlusion. This family of algorithms can be seen to lie halfway between ray-traced am-

bient occlusion and screen space ambient occlusion. Unlike screen space techniques,

geometry-based methods use geometry to compute ambient occlusion, and therefore

do not suffer from sampling artifacts such as under-sampling or popping. On the other

hand, these methods do not rely on ray tracing, so they are more efficient than ray-

traced ambient occlusion and can in fact run in real-time.

The approaches taken by geometry-based methods are varied. In some of these tech-

niques, the scene’s geometry is approximated with simple primitives such as spheres,

disks, or boxes, as do [SA07] and as illustrated in figure 2.15. In [KL05b], the authors

approximate occluders using spherical caps, which are represented with a direction

and a solid angle, and then use these to compute ambient occlusion at the occludees.

This produces visually plausible results as seen in figure 2.16. In [McG10], the authors

extrude the triangles of the scene horizontally and vertically in a geometry shader to

produce a volume for each triangle. The volumes are then rasterized, and the frag-

ments generated used to accumulate ambient occlusion values in an output texture.

2.4.4 Volume-based Ambient Occlusion

Volume-based techniques rely on a volume representation of the scene to compute am-

bient occlusion. The idea behind these approaches is to simplify the 3D geometry of the

scene by computing a voxelization and then use the resulting volume to derive an AO

Chapter 2. Background 16

FIGURE 2.15: Approximating the 3D geometry of the scene with spheres.
Source: [SA07].

FIGURE 2.16: Ambient occlusion fields. Source: [KL05a].

term for every point to be shaded. The AO term can be computed using ray marching

or by sampling a point’s nearby voxels, for example.

Volume-based approaches have certain advantages with respect to the other meth-

ods. Unlike ray-traced methods, volume-based techniques remain relatively decoupled

from the number of triangles in the scene. In practice, however, greater detail will be

required in denser areas, so that is why we say relatively decoupled. Furthermore, these

approaches have a full 3D representation of the scene unlike screen space approaches,

so problems such as popping are not fundamental to volume-based approaches.

2.5 Mobile GPU Architecture: Tile-Based Deferred Rendering

Since our work is based on mobile, this chapter would not be complete without an

overview of the basics of mobile GPU architecture. This section explores tile-based de-

ferred rendering, the rendering pipeline implemented by mobile chips, and compares

it with the traditional immediate mode rendering. Further coverage of this topic can

be found in [Som15] and [Mer12].

Chapter 2. Background 17

2.5.1 Immediate Mode Rendering

From a high-level point of view, the graphics pipeline is conceptually very simple.

First, the CPU sends a list of triangles to the GPU. Then, the GPU processes these tri-

angles, applying operations on the vertices that define them. Once the triangles have

been processed, the GPU rasterises them in order to determine which pixels are cov-

ered by each of the triangles. The GPU finally shades each of the pixels to determine

their final colour value, and presents the result on screen.

The above process is slightly more complex in reality. Often, a one-to-one mapping

between triangles and pixels does not exist. For example, multiple triangles can cover

the same pixel, in which case a depth buffer is used to determine their depth order.

Furthermore, if the scene contains transparent surfaces, multiple fragments may con-

tribute to a pixel’s final colour by means of alpha blending. Additionally, the GPU often

needs to access multiple textures when shading triangles or pixels, such as albedo or

normal textures as well as shadow and irradiance maps, thereby adding complexity to

the rendering process.

Depth testing, alpha blending, and the myriad of texture fetch operations a GPU must

perform per frame result in an increase of memory bandwidth requirements. As dis-

cussed in [Mer12], each pixel typically requires a fair amount of bandwidth, often ex-

ceeding 100 bytes per pixel. With a resolution of 1920× 1080, for example, that would

be over 197M per frame. Furthermore, many applications have traditionally suffered

from overdraw, resulting in a further increase of bandwidth requirements. The previ-

ous frame, for instance, would consume around 788M of memory bandwidth with an

overdraw of 4×.

While the above rendering scheme may present itself as expensive due to the high

bandwidth requirements, this is exactly what immediate mode renderers have been

implementing. In immediate mode rendering, the host sends triangles to the GPU and

the GPU then processes them, rasterises them, and shades the pixels covered by them

in a brute-force manner. As put by [Som15], this is done with no context of what has

already happened or what might happen next. As a consequence, immediate mode ren-

dering hardware is relatively simple to design and manufacture, and has ruled desktop

GPU architectures for years. Its high-demanding bandwidth has been satisfied with

ever-increasing memory speeds and bus widths, allowing immediate mode renderers

to scale up.

2.5.2 Tile-Based Deferred Rendering

While immediate mode rendering has been able to scale up on desktop GPUs by im-

proving memory bandwidth, it has however failed to scale down. The high memory

bandwidth requirements of immediate mode renderers result in a heavy tax on power

Chapter 2. Background 18

consumption and therefore battery life, making them suboptimal on mobile devices.

For this reason, a new approach is needed that is lighter on memory bandwidth.

Given that memory is expensive in terms of time, space and power, it makes sense to in-

troduce a memory hierarchy similar to cache memory in CPU architectures to improve

on all of these domains. This idea is at the essence of tile-based deferred rendering.

In tile-based deferred rendering, the framebuffer, which includes colour, depth, sten-

cil, and multisample buffers, is moved from main memory into a high-speed, on-chip

memory. Hardware operations such as vertex shading and hidden surface removal

then happen on this on-chip memory, speeding up the rendering process and lowering

bandwidth requirements.

Indeed, if the entire framebuffer were able to fit on the on-chip memory, the problem

would be immediately solved. This is however not the case. For this reason, tile-based

deferred rendering divides the scene into tiles of sizes ranging from 16× 16 to 32× 32,

as illustrated in figure 2.17. A tile-based deferred renderer then processes these tiles

one by one, or sometimes in small batches. For each tile, the renderer moves the data

needed to render the tile from main memory into the on-chip memory, performs all

necessary operations using this high-speed memory, and then moves the final result

back to main memory. Since many of the memory read/writes happen in the on-chip

memory, bandwidth is reduced by only having to access main memory at the beginning

and end of the process.

FIGURE 2.17: Screen divided into tiles in tile-based deferred rendering.
Source: [KS11].

Additionally, several stages in the graphics pipeline are deferred in tile-based deferred

rendering. For each tile, the hardware performs depth/stencil testing and alpha blend-

ing before the triangles are rasterised. Thus, rasterisation is deferred until tiling op-

erations are done. In addition, fragment processing is also deferred, saving the GPU

from processing fragments that may later be overwritten. This is what gives tile-based

deferred rendering the second part of its name.

Finally, it is worth noting that tile-based deferred rendering is transparent to the pro-

grammer. From the programmer’s point of view, a tile-based deferred renderer is no

Chapter 2. Background 19

different from an immediate mode renderer: the CPU still sends a list of triangles to the

GPU, and the GPU still processes these triangles in an apparent brute-force manner.

2.5.3 Performance Guidelines

Even though tile-based deferred rendering is transparent to the programmer, in prac-

tice, being familiar with the inner workings of this rendering scheme is essential to

optimising mobile applications.

Keeping framebuffer sizes to a minimum is an often followed guideline when devel-

oping mobile applications [Ori15]. A tile-based deferred renderer processes tiles one

by one or in small batches. For each tile, the renderer moves framebuffer data from

main memory to on-chip memory. As a consequence, the amount of tiles the screen is

divided into is a function of the framebuffer size. The smaller the framebuffer, the less

tiles needed, and the faster the rendering process is. An application should therefore

preferably minimise the size of the framebuffer. If offscreen rendering is used, an ap-

plication should use as few render targets as possible, and only as much precision as

required for its textures.

As explained in [Mer12], some GPUs such as those by PowerVR may perform hid-

den surface removal, removing the cost of shading hidden pixels and the associated

bandwidth consumption due to memory transfers. In these architectures, perform-

ing a Z-prepass does not provide any benefit. However, for most other architectures

a Z-prepass may still boost performance, so the programmer should still profile the

application and consider doing a Z-prepass like in desktop applications.

Finally, mesh vertex layouts can also be optimised for tile-based deferred rendering.

When a tile is processed, triangles are first transformed, depth-sorted, clipped and ras-

terised before any fragment processing takes place. During vertex processing, no vertex

information is required other than the vertex’s position; normals, colours, texture in-

dices and other per-vertex information is typically accessed only in fragment shaders.

For this reason, a vertex layout that places vertex positions in one buffer and then in-

terleaves the other vertex data in another buffer is optimal for this type of renderers.

Chapter 3

Screen Space Ambient Occlusion

In this chapter, we explore screen space ambient occlusion in greater detail and present

the different algorithms our work is based on.

3.1 Screen Space Ambient Occlusion

Screen space ambient occlusion is a screen space technique that approximates the am-

bient occlusion of a scene. The main observation behind this technique is that a pair of

depth and normal buffers, or ND-buffer for short, provides a coarse representation of

the geometry of a scene, as illustrated in figure 3.1. While coarse, an ND-buffer pro-

vides a good enough representation of the scene that can be used to approximate the

scene’s ambient occlusion. This is done by sampling a neighbourhood of points around

every pixel and using those samples to provide an estimate of the ambient occlusion

value for that pixel. In this way, screen space ambient occlusion is a Monte Carlo ap-

proximation of the ambient occlusion integral that uses an ND-buffer to determine a

pixel’s surface position and orientation.

FIGURE 3.1: The depth buffer as an approximation of the 3D geometry
of a scene. Source: [Gre09]

In this section we review the different concepts that appear in the discussion of screen

space ambient occlusion algorithms.

20

Chapter 3. Screen Space Ambient Occlusion 21

3.1.1 Near-field and Far-field Ambient Occlusion

One way to categorise ambient occlusion methods is based on their reach or extent.

Near-field methods are those that produce a very local effect, in which a point is oc-

cluded only by geometry that is close by. On the other hand, far-field methods are

those having a far reach and taking a greater neighbourhood into account. This is il-

lustrated in figures 3.2 and 3.3. Figure 3.2 shows a near-field effect. Notice how only

the creases in the object are occluded, and how the rest of the geometry appears com-

pletely unoccluded. Figure 3.3, on the other hand, shows an example of line-sweep

ambient obscurance, a far-field effect described in [Tim13]. The extent of the ambient

occlusion is much greater in this method, and even flat walls exhibit some occlusion

due to distant geometry.

FIGURE 3.2: Unsharp masking the depth buffer produces a near-field
ambient occlusion. Image from Mike Pan. http://mikepan.com/

FIGURE 3.3: Line-sweep ambient obscurance is a great example of far-
field ambient obscurance. Source: [Tim13]

In section 2.3.4, we saw how the fall-off function ρ assigns smaller values of ambient

occlusion to occluders that are farther away and cuts the value to zero when the occlud-

der is at a distance greater than some threshold. The fall-off function then determines

how local or global the ambient occlusion method is, that is, how much of the geometry

surrounding a given point influences that point’s ambient occlusion value. When only

a nearby portion of the geometry influences the point’s value, we say that the method

computes a near-field ambient occlusion. In contrast, when a far portion of the sur-

rounding geometry is taken into account, we say that the method computes a far-field

Chapter 3. Screen Space Ambient Occlusion 22

ambient occlusion.

In practice, many ambient occlusion methods have their performance limited by the

geometrical size of their sampling kernel, that is, how near- or far-field they are. For ex-

ample, a screen space method will generally have to sample a depth and normal buffer

at randomised locations. The wider the sampling kernel is, the more incoherent the

texture fetches become, thereby downgrading the algorithm’s performance. Volume-

based approaches suffer from the same problem. Recent techniques attempt to tackle

this problem explicity, such as the line-sweep algorithm presented in [Tim13], but the

problem remains for many of the popular methods.

3.1.2 Banding, Noise and Blur

As seen in previous sections, screen space ambient occlusion methods typically can

only gather a few number of samples per pixel to be able to run in real-time. This

results in two common under-sampling artifacts: banding and noise.

Banding occurs when only a few samples per pixel are gathered and then regions of

neighbouring pixels result in similar ambient occlusion values. This produces visible

stripes or bands in the output that are visually disturbing, as illustrated on the leftmost

image of figure 3.4.

To combat banding, screen space techniques typically randomise the samples taken per

pixel. In this way, neighbouring pixels are determined to compute different ambient

occlusion values, effectively removing the banding. However, since under-sampling

still exists, the combination of under-sampling and randomisation manifests itself as

noise in the image, as seen in the middle image of figure 3.4.

To remove the noise resulting from the randomisation of samples, screen space meth-

ods often blur their output in a post-process step. The most popular blur method is the

bilateral filter, which is a Gaussian filter that operates on the resulting ambient occlusion

output as well as the depth buffer. The latter is used to avoid blurring the occlusion

across the boundaries of objects. Blurring is illustrated in the rightmost image of figure

3.4.

FIGURE 3.4: Banding, noise and blur in our implementation. Ran-
dom sampling fixes banding artifacts but introduces noise. The noise
is blurred away in a post-process step, resulting in the rightmost image.

Chapter 3. Screen Space Ambient Occlusion 23

3.1.3 Popping

Banding and noise are not the only artifacts that result from screen space ambient occlu-

sion methods. Popping is also a common artifact. Since these methods work in screen

space, geometry that is not visible to the camera does not cast occlusion on nearby ob-

jects. However, as the camera moves, these objects may suddenly become visible and

cast occlusion on nearby surfaces, in which case shadows appear to pop into the image.

Similarly, when this geometry goes back out of scope, the shadows that they cast pop

back out. Popping is visually disturbing and cannot unfortunately be reproduced on

print, since a camera must be animated for popping to occur.

3.1.4 Flickering

Flickering is another artifact resulting from screen space approaches. Since screen space

ambient occlusion methods sample a number of pixels around the point being shaded,

when the camera moves, the set of pixels that are sampled refer to different 3D points in

the scene. Depending on the algorithm, this may give the point being shaded a slightly

different occlusion value. As a consequence, pixels may appear to flicker during ani-

mation, an effect that is especially visually disturbing for the human eye.

3.1.5 Robustness

Ambient occlusion is technically view-independent. However, screen space ambient

occlusion is inherently view-dependent, resulting in artifacts such as banding, noise,

popping or flickering. A screen space ambient occlusion algorithm is commonly said

to be robust when it minimises this view dependence. As a consequence, algorithms

that are robust are the most visually appealing to the viewer.

To alleviate popping and flickering, an often used technique is the use of guard bands.

Guard bands increase the size of the offscreen viewport where the ambient occlusion

computation is performed so that more geometry than the camera can see is taken into

account. With guard bands, if the original viewport has a size of N ×M , the ambient

occlusion viewport would have a size of (N +G)× (M +G), where G is the size of the

guard bands. In this way, more geometry is effectively taken into account, and both

popping and flickering are potentially reduced.

Chapter 3. Screen Space Ambient Occlusion 24

3.1.6 Scalability

Screen space ambient occlusion techniques often take many parameters, such as the

sample kernel radius, the number of samples, or resolution. Often, screen space tech-

niques are said to be scalable when these parameters can be improved without a sig-

nificant penalty in performance. Some methods scale down — can run in less capable

hardware with the same parameters and similar performance — while others scale up

— can increase the sample radius, number of samples or resolution without consider-

ably hurting performance.

3.2 Screen Space Ambient Occlusion Techniques

In this section we present the different screen space ambient occlusion techniques our

work is based on.

3.2.1 Image Enhancement by Unsharp Masking the Depth Buffer

Although not a true ambient occlusion technique, and although not physically-based,

the method presented in [LCD06] results in an image enhancement effect similar to

ambient occlusion. The essence of this technique is to map depth discontinuities in the

depth buffer to a scalar so as to darken crevices in the scene’s geometry. An example

of this technique can be seen in figure 4.21.

FIGURE 3.5: Unsharp masking of the depth buffer. Source: [LCD06].

Although the paper presents several techniques to modulate the colour, luminance or

contrast of an image, the basic pipeline remains the same for all techniques. First, the

algorithm blurs the depth buffer by applying a Gaussian filter, and then subtracts the

result from the original depth buffer:

∆D = G ∗D −D

Chapter 3. Screen Space Ambient Occlusion 25

where D is the depth buffer and G ∗D is a the convolution of a Gaussian filter kernel

and the depth buffer D. By subtracting the blurred depth buffer from the original, the

algorithm produces a new buffer ∆D that contains the high frequencies of the depth

buffer D. In other words, if a discontinuity existed in the original depth buffer D, the

discontinuity is enhanced in ∆D.

The algorithm then proceeds by using ∆D to alter the original colour image I in some

way. In its basic form, the unsharp mask method simply subtracts a scaling of the

resulting ∆D texture from the colour image I to achieve its darkening effect:

I ′ = I + λ∆D

for some λ ∈ R.

As mentioned above, unsharp masking of the depth buffer is not technically an ambient

occlusion method, but it produces results that can be understood as an approximation

to true ambient occlusion. The main advantage of this technique with respect to true

ambient occlusion methods is that it remains simple and computationally inexpensive,

making it suitable for lower end devices and especially suitable for mobile devices.

3.2.2 Crytek Ambient Occlusion

Screen space ambient occlusion was originally developed by Vladimir Kajalin at Cry-

tek. The technique was integrated into CryEngine 2, the game engine powering the

popular 3D game Crysis, which landed on the market in 2007. The technique was then

published as a SIGGRAPH course in that same year under the name Finding next gen:

CryEngine 2 [Mit07]. Being the first screen space technique, Crytek ambient occlusion

remains one of the most popular methods, since it was the pre-cursor to the myriad

of techniques that exist nowadays. A screenshot showing the result of Crytek ambient

occlusion can be seen in figure 3.6.

FIGURE 3.6: Screen space ambient occlusion in Crysis. Source:
Wikipedia.

Chapter 3. Screen Space Ambient Occlusion 26

Perhaps the most notable characteristic of Crytek ambient occlusion is the resulting

greyish images that it produces, as shown in the previous figure. This is a side effect

of how the method determines a point’s ambient occlusion value. In this method, po-

tential occluders centred in a sphere around a given point are sampled to determine

the point’s occlusion value. The samples are then projected to texture space, and their

depth compared to the depth value stored in the position of the depth buffer where

they project to. The two depth values are compared to determine if the sample is oc-

cluded by geometry (the sample’s depth is greater than the depth value stored in the

depth buffer), and the occlusion factor is finally defined as the proportion of samples

that are indeed occluded. This process is illustrated in figure 3.7. Because the sampling

kernel is spherical, half of the points are deemed to lie behind the surface for planar

surfaces, resulting in an over-occlusion value of 1
2 for these surfaces and yielding an

overall gray image.

FIGURE 3.7: Sampling kernel in Crysis ambient occlusion. Samples
are taken within a hemisphere centred at the point being shaded. As
a consequence, flat surfaces appear gray, since half of the samples are

occluded for such surfaces. Source: [Aal13].

From the algorithm description above, we can conclude that Crytek ambient occlusion

is a depth-only technique. That is, the only input to the Crytek method is a depth

buffer; no normal buffer is used. This saves bandwidth both when creating the off-

screen buffers and when sampling a point’s neighbours in the ambient occlusion shader

pass, but makes the method unable to determine surface orientation. Even though

normals could be reconstructed from the depth buffer by computing derivatives, this

would induce an additional overhead in the ambient occlusion pass in terms of com-

putation and additional texture fetch instructions, so the original algorithm does not

do this. The lack of surface orientation results in a spherical kernel, which in turn gives

this method its characteristic greyish look.

While the method’s output could be considered aesthetically pleasing, the worst part

comes when analysing its performance. Since half of the samples are deemed to lie

behind the surface for planar surfaces, the algorithm essentially wastes half of its sam-

ples. Modern techniques simply fix this issue by using a normal buffer to determine

surface orientation, the cost of which is no longer prohibitive in modern GPUs.

Chapter 3. Screen Space Ambient Occlusion 27

Finally, Crytek ambient occlusion uses a blur pass to reduce noise in its output. Cry-

tek ambient occlusion gathers 12 to 32 samples per pixel, depending on the machine’s

performance, which would in any case result in an under-sampling of the ambient

occlusion function that would in turn manifest itself as banding artifacts. To combat

this issue, the algorithm randomises the samples taken per pixel, trading banding for

noise. This noise is then removed in a secondary pass using a bilateral filter, resulting

in smooth images such as the one in figure 3.6. This additional blur pass has remained

quintessential of screen space ambient occlusion methods to reduce the noise resulting

from under-sampling.

3.2.3 Image-Space Horizon-Based Ambient Occlusion

Horizon-based ambient occlusion (HBAO) is a technique developed by Louis Bavoil

and Miguel Sainz at NVIDIA and introduced at SIGGRAPH in 2008 [BSD08]. The ob-

servation behind this approach is that if we trace a horizon line from a point p in some

direction θ, then rays below the horizon are known to be occluded under the assump-

tion that the heightfield is continuous, in which case their ambient occlusion evaluation

can be skipped. This technique is illustrated in figure 3.8.

FIGURE 3.8: Horizon-based ambient occlusion. Source: [BSD08].

Note that the horizon angle depends on the direction θ in which the ray is traced from

the point p. For this reason, the horizon angle must be computed along all directions θ

in the normal-oriented hemisphere. The ambient occlusion equation for horizon-based

ambient occlusion therefore becomes a double integral:

AO(p) = 1− 1

2π

∫ π

θ=−π

∫ h(θ)

α=t(θ)
W (ω) cosα dα dθ

In its implementation, horizon-based ambient occlusion is computed by ray marching

the depth buffer. A set of rays are shot from the point being shaded in randomised

directions. For each ray, the algorithm marches the depth buffer along the ray’s direc-

tion and reads from the depth buffer at discretised positions. Every time the algorithm

finds a point that is closer to the camera than the currently known closest point, the

Chapter 3. Screen Space Ambient Occlusion 28

point is treated as an occluder and the ambient occlusion function is evaluated for that

point. On the other hand, points that do not satisfy this criteria can be skipped, since

they are known to have been occluded by the currently known closest point. Finally,

the individual ambient occlusion terms for each sample are all added together to yield

the point’s final occlusion value.

As is usual in ambient occlusion algorithms, samples for each pixel are randomised

to prevent banding artifacts. In horizon-based ambient occlusion, this translates to

randomising the ray directions for every pixel. However, this randomisation and the

relatively low number of samples results in an under-sampling of the ambient occlu-

sion function, yielding to variance that manifests itself as noise in the image. To combat

this variance, horizon-based ambient occlusion performs a blur in a post-process step

to remove the noise.

An example of horizon-based ambient occlusion can be seen in figure 3.9 applied to the

famous dragon model.

FIGURE 3.9: Horizon-based ambient occlusion on the dragon model.
Source: [BSD08].

3.2.4 Starcraft 2 Ambient Occlusion

2008 also saw the release of Starcraft 2: Effects and Techniques, an article published in

SIGGRAPH describing the ambient occlusion technique featured in the game Starcraft

2 [FM08]. Starcraft 2 ambient occlusion can be seen as an improvement over Crytek

ambient occlusion, in which the surface normal is used in determining the surface’s

orientation to avoid sampling points behind the surface. This yields images like the

one in figure 3.10. Notice that in Starcraft 2 ambient occlusion, flat surfaces such as the

floor or bar appear white, unlike in Crytek ambient occlusion, in which they would

appear gray.

Starcraft 2 ambient occlusion introduces two contributions with respect to Crytek’s

method. The first improvement is that the algorithm uses the surface normal, stored

in a normal buffer in a G-buffer pass, to determine the surface’s orientation. In this

technique, points are sampled in the normal-oriented hemisphere instead of a sphere,

Chapter 3. Screen Space Ambient Occlusion 29

FIGURE 3.10: Screen space ambient occlusion in Starcraft 2. Source:
[FM08].

as shown in figure 3.11. This has two implications. First, flat surfaces appear white,

since points are now sampled only in front of the surface. This is closer to what a

ray-traced ambient occlusion method would produce and is more visually appealing.

Second, all of the samples gathered in Starcraft 2 are actually meaningful, since they are

known to lie in front of the surface. In other words, Starcraft 2 does not apply wasted

effort sampling points behind a surface.

FIGURE 3.11: Sampling kernel in Starcraft 2 ambient occlusion. Sam-
ples are taken within a normal-oriented hemisphere centred at the point
being shaded. Unlike Crysis ambient occlusion, flat surfaces are now

shaded correctly and appear white. Source: [Aal13].

The second contribution from Starcraft 2 ambient occlusion is its special fall-off func-

tion. In fact, the article proposes not a function in particular, but a family of functions.

One such function is depicted in figure 3.12. The idea behind this family of functions is

that the ambient occlusion for a point should be a function of the depth difference be-

tween a sample’s depth value and the value stored in the depth buffer at the sample’s

projection. This is in contrast to Crytek’s ambient occlusion method, where the test is

simply boolean.

To be physically-correct, the occlusion should fall as an inverse square of the depth dif-

ference between a sample’s depth and the depth stored at the sample’s projection at the

depth buffer. However, the authors choose to give their artists more freedom by allow-

ing them to choose any power curve as long as it satisfies three criteria. First, the curve

should be 0 for negative depth deltas, that is, for samples that are determined to be

Chapter 3. Screen Space Ambient Occlusion 30

FIGURE 3.12: Falloff function used in Starcraft 2 ambient occlusion.
Source: [FM08].

unoccluded. Second, the curve should yield greater occlusion values for smaller depth

deltas, mimicking the fact that nearby occluders produce greater occlusions. Finally,

the curve should fall off to 0 for large deltas for the same reason.

In addition to the above three criteria, the authors propose a fourth addition to the

fall-off function. The authors use a small epsilon to prevent false occlusions. Since the

depth and normal buffers have only a limited precision, in practice, samples outside of

the normal-oriented hemisphere and behind the surface may be taken. To prevent these

samples from contributing to the ambient occlusion of a point, the authors design their

fall-off function such that small depth deltas below the threshold yield an occlusion of

zero, instead of yielding maximum occlusion. This prevents false occlusions, making

flat surfaces appear completely unoccluded as expected.

Finally, it is worth noting that the idea of using a normal buffer to determine surface ori-

entation has been adopted by many of the screen space ambient occlusion techniques

following Starcraft 2 AO, as well as the use of the family of fall-off function described

above. For these reasons, Starcraft 2 ambient occlusion remains one of the most popular

techniques.

3.2.5 Screen Space Ambient Occlusion using Temporal Coherence

Screen space ambient occlusion using temporal coherence, or TSSAO for short, is an

ambient occlusion algorithm that exploits temporal coherence to reduce noise and blur-

ring artifacts, as well as to speed up previous algorithms [MSW10]. In this approach,

ambient occlusion information from previous frames is reused in consecutive frames

Chapter 3. Screen Space Ambient Occlusion 31

by exploiting temporal coherence. Pixels describing identical world-space positions are

identified by means of temporal reprojection. The current state of the solution is cached

in what the authors call an ambient occlusion buffer. In a given frame, ambient occlusion

samples are computed, and the results blended with the buffer to yield a final ambient

occlusion value for each pixel. In this way, information from previous frames is used

in consecutive frames, resulting in a robust algorithm.

FIGURE 3.13: Temporal screen space ambient occlusion. Source:
[MSW10].

3.2.6 Alchemy Ambient Obscurance

The Alchemy ambient obscurance algorithm is a popular technique originally devel-

oped for a Guitar Hero title and then integrated into Alchemy engine from Vicarious

Visions in 2011 [McG+11]. Alchemy chooses a special fall-off function that cancels sev-

eral terms in the visibility integral and results in an algorithm that is robust, temporally

coherent and efficient. An example of Alchemy ambient occlusion can be seen in figure

3.14.

From the author’s point of view, Alchemy satisfies four different properties that none

of the previous ambient occlusion methods satisfied simultaneously; Alchemy is ro-

bust, multiscale, scalable and provides artist control. Robustness refers to the fact that

Alchemy produces no halos or false shadows near silhouettes, limits viewer depen-

dency (ambient occlusion is technically viewer independent, but since these methods

are screen space they do result in viewer-dependent artifacts) and maximises temporal

coherence. Alchemy is also multiscale, meaning that it captures both low-frequency

and high-frequency occlusion details. In addition, Alchemy’s fall-off function allows

Chapter 3. Screen Space Ambient Occlusion 32

FIGURE 3.14: Alchemy ambient occlusion in an example scene. Source:
[McG+11].

the artist to control four different parameters that are relatively independent from each

other: radius, bias, intensity and contrast. Finally, Alchemy is scalable, computed in 3

to 5ms in a range of devices from the Xbox 360 to Direct3D 11 hardware.

All of the above properties are a consequence of Alchemy’s ambient occlusion equa-

tion. After making all of the simplifications and applying Monte Carlo on the visibility

integral, Alchemy’s equation becomes

AO(p) = max

(

0, 1− 2σ

s

s
∑

i=1

max(0, ~vi · ~n+ zCβ)

~vi · ~vi + ǫ

)k

where s is the number of samples, ~vi is the vector from the occluder to the occludee, σ

is the intensity scale, k is the contrast, zCβ is the product of the usual depth bias β and

the occludee’s depth value zC , and ǫ is a small number to prevent underflow.

The sampling scheme in Alchemy ambient occlusion is simple and straightforward.

Samples are generated in texture space in a disk centered at the projected of the to-be-

shaded point p. These samples are then unprojected to view space, yielding potential

occluders around the point p. The term ~vi in the equation is then defined as the vector

from p to the potential occluder, the equation is applied, and the results averaged for

every sample. This procedure is illustrated in figure 3.15.

FIGURE 3.15: Sampling kernel used in Alchemy ambient obscurance.
Samples are taken from a normal-oriented hemisphere centred at the

point being shaded. Source: [Aal13].

Chapter 3. Screen Space Ambient Occlusion 33

3.2.7 Separable Approximation of Ambient Occlusion

In Separable Approximation of Ambient Occlusion [Hua+11], the authors note that screen

space ambient occlusion can be understood as a local 2D filter that evaluates a point’s

visibility in screen space. Inspired by the popular separable Gaussian filter in the image

processing domain, the idea behind separable ambient occlusion is to separate this 2D

filter into two 1D filters. While this approach is not technically correct and only results

in an approximation of the original 2D filter, the method is an order of magnitude faster

and the results remain visually appealing, as illustrated in figure 3.16.

FIGURE 3.16: Examples of separable ambient occlusion. Source:
[Hua+11].

Separable ambient occlusion can be combined with previous ambient occlusion meth-

ods. This is because separable ambient occlusion only modifies the sampling scheme

of an ambient occlusion technique, and does not impose any particular ambient occlu-

sion equation. This gives the developer the freedom to choose their equation, and as

a result, separable ambient occlusion may result in many different implementations in

practice.

In separable ambient occlusion, samples are gathered by ray marching the depth buffer

along two orthogonal line segments anchored at the point to be shaded. An ambient

occlusion equation is applied to these samples, and the results averaged together to

produce the point’s final occlusion value. Because scanning along to fixed directions

for every pixel would produce banding artifacts, in practice, the set of orthogonal di-

rections is randomised for every pixel with the help of a texture of random orthogo-

nal vectors, as illustrated in figure 3.17. As with other techniques, this randomisation

trades banding for noise, in which case the results must be blurred in a post-process

step.

3.3 Blur Techniques

Many ambient occlusion techniques rely on a blur filter to remove noise introduced due

to random sampling. In this section, we cover two of the most popular blur methods:

the bilateral filter and the separable blur.

Chapter 3. Screen Space Ambient Occlusion 34

FIGURE 3.17: Sampling patterns in separable ambient occlusion. Am-
bient occlusion is evaluated for every pixel along orthogonal axes. To
improve quality, the orthogonal axes are randomly rotated per pixel.

Source: [Hua+11].

3.3.1 Bilateral Filter

The bilateral filter is an extension of the well-known Gaussian blur. A Gaussian blur

produces smooth results by blurring each pixel as a function of both the value of neigh-

bouring pixels and their distance to the pixel being blurred. That is:

GB[I]p =
∑

q∈S

Gσ(||p− q||)Iq (3.1)

where p is the pixel being blurred, S is a circular neighbourhood of pixels around p, q

is a pixel in that neighbourhood, ||p − q|| is the distance from p to q, Ip is the intensity

of pixel p, Iq is the intensity of pixel q, and Gσ is the normalised Gaussian function:

Gσ(x) =
1

σ
√
2π

exp

(

− x2

2σ2

)

where σ is the window size.

Let us illustrate the above definition of the Gaussian blur. Figure 3.18 shows an exam-

ple Gaussian kernel. Here, a circular neighbourhood S of pixels is shown. The pixel

being blurred, p, would be the center of the circle, and q would be each of the pixels in

the circle. In addition, every pixel is coloured in a shade of gray. White denotes that

the pixel has maximum contribution to the blur, whereas black denotes no contribu-

tion. Note that the contribution neighbours is maximum and the center and quickly

decreases as we move away from it.

On the other hand, figure 3.19 shows the Gaussian function Gσ in equation 3.1. This

is the function that gives pixels their colour in figure 3.18. Note how the function is

maximum at the center (where q = p) and quickly decreases as we move away from it.

Chapter 3. Screen Space Ambient Occlusion 35

FIGURE 3.18: An example Gaussian kernel. Note how the contribution
of neighbours is maximum at the center and quickly decreases as we

move away from it. Source: [Syl07]

FIGURE 3.19: An example Gaussian function. Note how the contribu-
tion of neighbours is maximum at the center and quickly decreases as

we move away from it. Source: [Syl07]

Finally, figure 3.20 shows a Gaussian blur applied to an example image. Note how the

result is smooth, with no visible artifacts.

In the domain of computer graphics, the Gaussian blur often comes rather close but

does not produce the desired result. The problem with the Gaussian blur is that it does

not distinguish between pixels of different objects in the scene. In other words, the

Gaussian blur is not geometry-aware. As a consequence, the edges of objects are not

respected and are blurred away, as illustrated in the right image of figure 3.20.

The solution to the above problem is to blur a pixel by taking into account not just the

distance to its neighbours, but also the difference between pixel intensities. This gives

rise to the bilateral filter equation:

BF [I]p =
1

Wp

∑

q∈S

Gσs
(||p− q||)Gσr

(|Iq − Ip|) Iq (3.2)

Equation 3.2 is like equation 3.1 but with two additional terms. The term Gσr
(|Iq − Ip|)

Chapter 3. Screen Space Ambient Occlusion 36

FIGURE 3.20: An example of Gaussian blur applied to an image. Left:
input, right: output. Source: [Syl07]

is the same Gaussian function G applied to the difference between the intensities of

the neighbour q and the pixel being blurred p. This is what prevents blurring across

edges. Furthermore, the term 1
Wp

is introduced as a normalisation factor that makes the

weights add up to 1. Finally, note that we now define two window sizes, σs and σr, for

the space and intensity weights respectively.

Figure 3.21 shows a bilateral filter applied to the same image in figure 3.20. Notice how

edges are now perfectly preserved, while the pixels within the contours of objects are

still correctly blurred.

FIGURE 3.21: An example of Gaussian blur applied to an image. Left:
input, right: output. Source: [Syl07]

In the context of ambient occlusion, we wish to blur the output of an ambient occlusion

shader to remove noise due to random sampling. In this context, the second weight

term is not a function of pixel intensity, but a function of pixel depth:

BFAO[I]p =
1

Wp

∑

q∈S

Gσs
(||p− q||)Gσr

(|Dq −Dp|) Iq (3.3)

In equation 3.3, Dq is the depth of pixel q and Dp is the depth of pixel p. The intuition

behind this equation is that pixels belonging to different objects are often far apart in

the plane or far apart in depth, in which case one of the two weight terms in equation

3.3 becomes very small and prevents the bilateral filter from blurring across edges.

Chapter 3. Screen Space Ambient Occlusion 37

Finally, figure 3.22 shows a bilateral filter applied to the output of an ambient occlusion

shader to remove the noise due to random sampling. Notice how the noisy patterns

are removed, while edges are preserved.

FIGURE 3.22: A bilateral filter applied to the output of an ambient oc-
clusion shader to remove the noise due to random sampling.

3.3.2 Separable Blur

While the bilateral filter provides excellent results, it does have a major drawback: per-

formance. The bilateral filter must access a number of pixels that is proportional to the

square of the radius of the filter’s kernel, making the algorithm O(N2). In the domain

of screen space ambient occlusion, this cost is often too high on low-end devices.

The idea behind the separable bilateral filter, or separable blur for short, is to separate

the original algorithm into multiple passes, one for each dimension [PV05]. In the

context of blurring an image, a first pass blurs the original image along the x-axis to

generate an intermediate image, and a second pass blurs this intermediate image along

the y-axis.

In mathematical terms, the image is first blurred along the x-axis as if a bilateral filter

were being performed, except that the neighbourhood is now defined as a flat stripe of

pixels instead of a circle:

I ′p =
1

Wp

∑

q∈X

Gσs
(||p− q||)Gσr

(|Dq −Dp|) Iq

where X denotes a a horizontal stripe of pixels centred at p.

The resulting intermediate image I ′ is then blurred along the y-axis in a similar manner:

I ′′ =
1

Wp

∑

q∈Y

Gσs
(||p− q||)Gσr

(|Dq −Dp|) I ′q

Chapter 3. Screen Space Ambient Occlusion 38

Putting both equations together yields the separable blur equation:

I ′′ =
1

W 2
p

∑

q∈Y

Gσs
(||p− q||)Gσr

(|Dq −Dp|)

∑

q∈X

Gσs
(||p− q||)Gσr

(|Dq −Dp|) Iq

The separable blur blurs the image horizontally in one pass, and vertically in a second

pass. The resulting algorithm is therefore O(N), where N is the size of the neighbour-

hood or stripe.

Note that technically speaking, the bilateral filter is non-separable. For this reason, the

separable blur only provides an approximation of a true bilateral filter. Nevertheless, in

the context of screen space ambient occlusion, this approximation is often good enough,

and is cheaper to compute than a true bilateral filter.

Chapter 4

Implementation on Mobile

In this chapter, we describe the different implementations of screen space ambient oc-

clusion that we have written for mobile, the rendering pipeline that supports them and

the sampling schemes and blur filters used. We also state the design decisions behind

our work and the characteristics and limitations of mobile GPUs on which they are

based.

This chapter presents the end result of our work and has been conveniently written in a

style that makes it suitable to be read as a reference. In the following chapter, we show

the experiments performed during the development of our work to justify the design

decisions stated here.

4.1 Characteristics and Limitations of Mobile GPUs

Mobile GPUs exhibit some limitations with respect to desktop GPUs that directly affect

the implementation of screen space ambient occlusion. These can be summarised as

follows:

• Limited memory bandwidth.

• Limited compute power.

• Very high screen resolutions.

It is worth noting that while these limitations may also exist on desktop GPUs, their

effects on mobile GPUs are typically exaggerated.

In our work, we design a rendering pipeline and sampling schemes to help overcome

these limitations. To add complexity, optimisations for each of these limitations often

conflict with each other. As a consequence, the target application must be profiled and

a balance between these conflicting optimisations must be found to achieve optimal

performance.

39

Chapter 4. Implementation on Mobile 40

4.1.1 Limited Memory Bandwidth

Unlike desktop GPUs, mobile GPUs must be carefully optimised not only for perfor-

mance, but also for power consumption, as this is what determines a device’s battery

life. As it turns out, one of the main factors driving power consumption is memory

bandwidth [Amd; Fol14]. As a consequence, mobile devices typically offer very lim-

ited memory bandwidth compared to desktop GPUs.

When implementing screen space ambient occlusion, we strive to keep memory band-

width use to a minimum for performance. This can be achieved by following the guide-

lines below:

• Minimise texture resolutions and compress textures if possible.

• Use non-native screen resolutions.

• Minimise render target precision.

• Compress G-buffer data.

• Limit the number of samples taken when computing ambient occlusion.

• Prefer linear over quadratic blurs.

The above guidelines are taken from resources such as [Ios] and [QT15]. While these

resources are written for specific platforms, the optimisations described often apply to

other devices.

4.1.2 Limited Compute Power

As will be seen in the following chapter, not all memory bandwidth optimisations re-

sult in a faster rendering pipeline. Some memory optimisations require that additional

floating-point operations be performed in shaders, and these may result to be more tax-

ing than the additional use of memory bandwidth. Compared to desktop GPUs, mobile

GPUs only offer limited compute power. For example, previous generation NVIDIA

GTX 760 offers 2.258 TFLOPS of computing power, whereas the recent Adreno 430 GPU

(2015) offers 0.38 TFLOPS1. A balance between memory savings and compute power

requirements must therefore be established for optimality.

The following guidelines help overcome the limited compute power offered by mobile

devices in our implementation:

• Cache data in the G-buffer to avoid additional computations in shaders.

• Limit the number of samples taken when computing ambient occlusion.

• Prefer linear over quadratic blurs.

1https://versus.com/en/qualcomm-adreno-430-vs-nvidia-geforce-gtx-760

Chapter 4. Implementation on Mobile 41

Note that the first guideline, caching data in the G-buffer, conflicts with the memory-

saving guideline of compressing G-buffer data in the previous section. For example,

one might decide to compress normals into just two texture channels of a render target.

In doing so, however, any shader using normal data must then reconstruct the missing

coordinate, increasing the number of floating-point operations performed and draw-

ing more computational power. Ultimately, the target application must be profiled to

determine which approach is best.

On the other hand, guidelines such as taking fewer samples during the ambient oc-

clusion computation are shared by both optimisation domains. Taking fewer samples

reduces the number of texture fetch operations as well as the number of floating-point

operations performed, simultaneously optimising for both memory bandwidth and

compute power.

4.1.3 High Screen Resolutions

Mobile devices often pack high screen resolutions into small form factors. For example,

Google’s Nexus 10 offers a resolution of 2560×1600 pixels in a 10" screen2, resulting in a

higher PPI than that of the average desktop monitor. Such high resolutions directly im-

pact the performance of different stages of the rendering pipeline, increasing memory

bandwidth requirements, compute power requirements and adding tax on fillrates.

To overcome this problem in our implementation, we render the scene using non-native

resolutions. To avoid deformation, we use a scaling of the screen’s native resolution,

typically 1
4 of the original size.

With these limitations in mind, we now proceed to describe our implementation in the

sections that follow. Results, performance analyses and justifications for the decisions

taken here are provided in the following chapter.

4.1.4 Tile-Based Deferred Rendering

As described in chapter 2, mobile GPUs implement a tile-based deferred rendering

pipeline. One of the consequences of this approach is that framebuffer sizes have a

direct impact on performance [Ori15]. Larger sizes imply a greater number of tiles, and

since these are processed sequentially on in small batches, this implies longer rendering

times.

In the context of screen space ambient occlusion and offscreen rendering in general,

smaller G-buffers and non-native resolutions are preferred. The former reduces the

amount of data needed to process a pixel, and the latter reduces the overall amount of

work to be performed on the hardware.

2https://en.wikipedia.org/wiki/Nexus_10

Chapter 4. Implementation on Mobile 42

4.2 Rendering Pipeline

Before delving into the implementation of each ambient occlusion algorithm, we de-

scribe the rendering pipeline supporting these algorithms. We propose two rendering

pipelines, each with their own share of advantages and disadvantages. One should

choose one of the two pipelines based on the specifics of their application and target

platforms, balancing the benefits and downsides of each.

4.2.1 ND-buffer Pipeline

The first pipeline we propose is illustrated in figure 4.1. In this pipeline, the scene’s

geometry is rendered in a first pass to generate an ND-buffer. An ambient occlusion

shader is then invoked, taking the ND-buffer as input and producing an ambient oc-

clusion texture in its output. Finally, the scene’s geometry is rendered once again to

compute all of the scene’s illumination in a forward pass, using the the generated am-

bient occlusion texture to modulate ambient light.

Depth Normal

Ambient Occlusion

Final Render

FIGURE 4.1: Ambient occlusion ND-buffer rendering pipeline. The
scene is rendered once to generate an ND-buffer. An ambient occlu-
sion is invoked in a second stage to generate an ambient occlusion tex-
ture from this buffer. The scene is then rendered in a second and final
forward pass where the scene’s illumination is computed and the previ-
ously generated ambient occlusion texture is used to modulate ambient

light.

To generate the ND-buffer, we render the scene’s geometry into a framebuffer ob-

ject. The framebuffer object contains two render targets: a single RGB colour target

(GL_COLOR_ATTACHMENT0) to store normals and a depth target (GL_DEPTH_COMPONENT)

Chapter 4. Implementation on Mobile 43

to store the depth. Because these two targets must be sampled from the ambient occlu-

sion shader, we attach textures and not renderbuffers them.

From our experiments, generating an ND-buffer is faster than generating a full G-

buffer. Since only depth and normals must be generated, and since many ambient

occlusion algorithms work best when using face normals instead of normal-mapped

normals, only vertex positions and per-vertex normals are needed to generate the ND-

buffer; all other vertex attributes such as texture coordinates and auxiliary textures

such as albedo can be ignored. As a result, memory bandwidth consumption is greatly

reduced, making the ND-buffer pass considerably cheaper than a full G-buffer pass.

To boost performance even further, we generate an ND-buffer that is a scaling of the

original screen size. In doing so, memory bandwidth consumption is reduced by per-

forming fewer texture writes when generating the ND-buffer and by performing fewer

texture reads when computing ambient occlusion. In addition, fewer pixels must be

processed. As a result, both ND-buffer generation and ambient occlusion become

cheaper. From our experiments, we observe that a scaling factor of 1
4 provides an ac-

ceptable trade-off between quality and performance. In addition, this scaling does not

affect the resolution of the final image, since the final rendering is done in a separate

forward pass.

Once the ND-buffer is generated, it is fed as an input to the ambient occlusion stage.

This stage may in fact represent several render passes. For example, many ambient oc-

clusion techniques blur their output to remove noise, amounting to two render passes.

And the blurring itself may in turn be implemented in multiple passes, further increas-

ing the complexity of this stage.

Finally, the scene’s geometry is rendered once again in a second forward pass. This

pass writes directly to the screen’s framebuffer and is responsible for computing the

scene’s illumination and generating the final image that is displayed on screen. In this

pass, the ambient occlusion texture generated in the previous stage is used to modulate

the ambient lighting term of the lighting equation.

The ND-buffer pipeline offers several advantages that make it a candidate worth con-

sidering. First, the ND-buffer pipeline does not require multiple render targets, so

it is supported on older OpenGL ES 2.0 hardware; pixel depth can be saved in the

GL_DEPTH_COMPONENT target of a framebuffer object, and normals can be saved as

an RGB texture in the framebuffer’s single colour output channel. Given that most

OpenGL ES 3.0 devices are middle to top tier at the time of writing, this is a property

worth considering if older hardware is to be supported. Second, the ND-buffer pass

is much cheaper with respect to a full G-buffer pass, since less data has to be writ-

ten. This makes this approach especially attractive on low-end devices. Third, since

the final output is rendered in a forward pass, the application can make use of hard-

ware multisampling to produce anti-aliased images. Finally, since the ND-buffer and

Chapter 4. Implementation on Mobile 44

the final rendering are generated in two separate rendering passes, the ND-buffer can

be downscaled for greater performance, while performing the final rendering at full

resolution.

The main disadvantage of the ND-buffer pipeline is that geometry must be rendered

twice, so an application that is triangle bound will only see this bottleneck increased.

Furthermore, the ND-buffer pipeline does not support deferred shading or any render-

ing technique relying on a full G-buffer containing render targets other than depth and

normals. While this may not be an issue on low-end devices, it may be inconvenient if

the application targets middle to high-end hardware. In addition, it may sometimes be

preferable to store view-space positions instead of depth in the ND-buffer as we will

see later, and it is not obvious how to do this without multiple render targets. Finally,

the depth value that is written to the GL_DEPTH_COMPONENT target of the framebuffer

is non-linear, which may produce undesirable results in many ambient occlusion tech-

niques due to the loss of precision in the background.

4.2.2 G-buffer Pipeline

The second pipeline we propose is illustrated in figure 4.2. In this pipeline, we first

render the scene’s geometry to generate a G-buffer containing three textures: depth or

position, normals, and albedo. The depth/position and normal textures are then fed to

an ambient occlusion shader in a second pass to produce an ambient occlusion texture.

A final compositing pass then takes this texture together with the normal and albedo

textures and generates the final output, computing the illumination for every pixel of

the screen.

To generate the G-buffer, we render the scene’s geometry into a framebuffer object.

This framebuffer object contains four render targets: three GL_COLOR_ATTACHMENTs

storing depth/position, normals, and albedo, and a fourth target containing an auxil-

iary depth buffer. Since the first three targets must be accessed from shaders in later

stages, we attach textures to them. The auxiliary depth buffer, however, need not be

sampled, so a renderbuffer is used instead to boost performance.

When generating the G-buffer, we let the application store depth or view-space posi-

tion depending on which ambient occlusion technique is used. From our experiments,

some techniques may run faster when reading view-space positions directly instead of

reading depth and then reconstructing positions, so our application has the flexibility

to generate one or the other. Since this buffer may contain depth or position, we refer

to it as the depth/position buffer.

As with the ND-buffer pipeline, we generate a G-buffer that is 1
4 of the original screen

size. This makes both G-buffer generation and ambient occlusion computation more

efficient.

Chapter 4. Implementation on Mobile 45

Depth / Position Normal Albedo

Ambient Occlusion

Composite

FIGURE 4.2: Ambient occlusion G-buffer rendering pipeline. The scene
is rendered once to generate a G-buffer containing depth/position, nor-
mals and albedo. The depth/position and normal textures are used in a
second stage to compute ambient occlusion. The resulting ambient oc-
clusion texture and the albedo texture are used in a final compositing

pass to compute the illumination at every pixel.

Just like in the ND-buffer pipeline, the ambient occlusion stage in figure 4.2 may rep-

resent multiple render passes depending on the complexity of the ambient occlusion

technique being used.

The final rendering stage does differ from that of the ND-buffer pipeline, however.

Like in the ND-buffer pipeline, this stage writes directly to the screen’s framebuffer

and is responsible for generating the final image that is displayed on screen. Unlike the

ND-buffer pipeline, the scene’s geometry is rendered only once and not twice; in this

final compositing stage, the final output is computed solely from the G-buffer and the

ambient occlusion texture generated in the previous stage.

The G-buffer pipeline complements the ND-buffer pipeline in terms of advantages and

disadvantages. The G-buffer pipeline allows us to implement deferred shading and

other rendering techniques relying on a full G-buffer, and combine them with ambient

occlusion. In addition, the scene’s geometry need only be rendered once, since the

final compositing pass takes its inputs from the G-buffer. Finally, this pipeline allows

us to trivially store view-space positions instead of depth, which may sometimes be

preferable, as we will see in the results section.

On the other hand, the G-buffer pipeline requires multiple render targets, so this pipeline

can only be implemented on OpenGL ES 3.0 compatible hardware or by using non-

portable extensions such as NV_draw_buffers extension (NVIDIA-only). Fur-

thermore, generating a G-buffer is more expensive than generating an ND-buffer, so

Chapter 4. Implementation on Mobile 46

this pipeline is more taxing on memory bandwidth. In addition, since the final com-

positing takes its inputs from the G-buffer, multisampling is not possible unless ex-

tensions like GL_EXT_framebuffer_multisample are used. Plus, if the G-buffer is

downscaled for performance, so is the final compositing, unless the G-buffer is gen-

erated at full resolution and then explicitly downscaled in a separate pass. These two

properties combined may potentially result in pixelated images. Finally, this pipeline as

is may not be normal-mapping friendly. Many ambient occlusion techniques work best

on flat, per-surface normals, and since the normals render target is used for both the

ambient occlusion pass and the final compositing, the final compositing would have

to compute illumination using flat normals as well. To overcome this, one could either

generate a separate normals texture for use in compositing, or simply generate normal-

mapped normals instead. The former would increase the tax on memory bandwidth,

while the latter would require ambient occlusion shaders to be tweaked.

4.2.3 Pipeline Feature Matrix

For reference and ease of readability, we have summarised the advantages and disad-

vantages of the two pipelines in what we call the pipeline feature matrix, shown in

table 4.1. The two pipelines complement each other in terms of advantages and disad-

vantages, so the programmer should implement the one that is most suitable for their

application.

ND-buffer G-buffer

OpenGL ES version 2.0+ 3.0+ or extensions

Geometry passes 2 1

Memory bandwidth Low High

View-space positions No Yes

Linear Depth No Yes

Multisampling Hardware extensions

Downscaling Free Impacts final rendering, or additional pass

Deferred Shading No Yes

Normal mapping Yes May require tweaks

TABLE 4.1: Pipeline feature matrix.

In table 4.1, we have highlighted the characteristics of the pipelines in different colours.

Green denotes an optimal or desirable property, while red denotes an undesirable one.

Orange denotes a property that may or may not be desirable.

Chapter 4. Implementation on Mobile 47

With respect to the OpenGL ES version required by the pipelines, we believe that the

fact that the G-buffer pipeline requires a 3.0+ capable device is not entirely undesirable,

since it is only a matter of time that old, 2.0 devices phase out in favour of modern,

3.0 ones. According to Unity’s hardware statistics page3, 44.9% of devices are already

OpenGL ES 3.0 compatible, so this assumption is not too far from reality.

When discussing downscaling of offscreen buffers, we mentioned that downscaling

generally yields a performance boost, but may produce pixelated images in the G-

buffer pipeline. On the other hand, rendering at a resolution lower than the screen’s

native resolution if often desirable in any case, as explained in [Fel15]. For this reason,

we believe this property is not entirely undesirable. In a similar manner, we believe the

lack of multisampling in the G-buffer pipeline is not a major issue.

Finally, if normal-mapping is to be added to the G-buffer pipeline, ambient occlusion

shaders may have to be tweaked. Many algorithms work best when using per-vertex

normals or simply face normals rather than normal-mapped normals, so the ambient

occlusion shader may have to be modified to prevent over-occlusion. On the other

hand, this may reveal subtle occlusion effects due to the normal maps, so this property

may or may not be undesirable.

4.2.4 Our Pipeline

In our final implementation, we assume the device supports OpenGL ES 3.0 and im-

plement a G-buffer pipeline. Table 4.2 summarises the characteristics that are specific

to our pipeline. We decided on this particular implementation after extensive experi-

mentation and research. The following chapter describes the experiments that led to

this result. Finally, note that since our pipeline is a G-buffer pipeline, it inherits all of

the properties listed under the G-buffer column in table 4.1.

In our rendering pipeline, we generate a G-buffer with three render targets: a 16-bit

RGB texture storing view-space positions or a 16-bit R texture storing depth, depending

on which ambient occlusion technique is used, an 8-bit RGB texture storing per-vertex

normals, and a third 8-bit RGB texture storing albedo.

From our experiments, generating view-space positions instead of depth for some of

the ambient occlusion techniques may result in a slight performance boost. Although

G-buffer generation is more expensive in this case, the cost is outweighed by these

techniques not having to spend computation time reconstructing position from depth.

In any case, this may vary from platform to platform, so profiling should be done to

decide which approach is best.

Furthermore, given that the G-buffer pipeline allows us to generate linear depth, we

choose to do this to avoid depth precision problems in far away geometry.

3http://hwstats.unity3d.com/mobile/gpu.html

Chapter 4. Implementation on Mobile 48

Pipeline G-buffer

Render targets 16-bit R[GB] depth/position

8-bit RGB normals

8-bit RGB albedo

View-space positions Depends on shader

Linear Depth Yes

Multisampling No

Downscaling Yes, with impact on final rendering

Z-prepass No

Normal mapping No

TABLE 4.2: Characteristics of our pipeline. Note that since this is a G-
buffer pipeline, all properties under the G-buffer column in table 4.1 are

inherited.

As for multisampling and downscaling, we do not perform any multisampling and

generate a G-buffer that is 1
4 of the native screen resolution. The final compositing

pass takes its inputs from this G-buffer, and the result is therefore of lower resolution.

However, from our experiments, the pixelation resulting from this approach is barely

visible, and the savings in terms of computation cost greatly outweigh this quality loss.

In our pipeline, we do not perform a Z-prepass. The cost of the ambient occlusion

pass is much greater than that of generating the G-buffer in our tests, so there is little

to be gained from a Z-prepass. Again, profiling should be done to determine which

approach is best; a Z-prepass might yield a performance boost in scenes with great

depth complexity.

Finally, we leave normal mapping aside in our implementation. However, normal

maps could easily be added in. The only downside, as previously mentioned, is that

ambient occlusion shaders may have to be modified to mitigate over-occlusion.

4.3 Random Sampling

Screen space ambient occlusion techniques approximate the ambient occlusion equa-

tion at a point by taking a discrete number of samples around it. Some techniques do

this in 3D, sampling a normal-oriented hemisphere centred at the point. Others work

in 2D, sampling a disk centred at the projection of the point. In this section, we describe

the two sampling methods used in our implementation: disc sampling and hemisphere

sampling.

Chapter 4. Implementation on Mobile 49

In both sampling methods, we keep the sample count to just eight samples per pixel.

Desktop implementations typically gather 16-32 samples, but this range is prohibitive

on mobile devices. A sample count of eight yields a reasonable trade-off between qual-

ity and performance, reducing memory bandwidth and compute power requirements

while delivering acceptable results in real-time.

When using such a low number of samples, the sampling pattern must be chosen care-

fully. Unlike a desktop implementation, where 16-32 samples are typically used, our

implementation cannot rely on a pseudo-random number generator to directly gener-

ate sample points. With just 8 samples per pixel, this approach would result in skewed

distributions, delivering suboptimal results in the ambient occlusion computation. For

this reason, we compute sampling patterns offline and hard-code them into our im-

plementation. This enhances both the robustness and reproducibility of our sampling

schemes.

4.3.1 Disc Sampling

Ambient occlusion methods working in 2D sample a local neighbourhood in texture

space around the point being shaded. A popular technique to this end, and the one we

use in our implementation, is the use of Possion discs. Poisson disc sampling produces

sets of points that are closely packed together, but no closer than a given minimum

distance, as illustrated in figure 4.3. This is a desirable property in screen space ambient

occlusion, where samples should preferably be evenly distributed around the point

being shaded. In fact, this property is especially crucial in our implementation, where

only a few number of samples are gathered (8). Using a Poisson disc ensures that the

distribution of samples is evenly spaced, and results in better quality sampling than

just generating random points in the plane with a pseudo random number generator.

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

FIGURE 4.3: Poisson disc with 64 samples.

In our implementation, we use the Poisson disc illustrated in figure 4.4. This is a disc of

8 samples that is computed offline using Coderhaus’ Poisson Disk Generator tool. Coder-

haus’ tool is an implementation of [Bri07], a modified version of the dart throwing al-

gorithm that generates Poisson disc samples in O(N) time and in arbitrary dimensions.

Chapter 4. Implementation on Mobile 50

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

FIGURE 4.4: Poisson disc with 8 samples.

The Poisson disc in figure 4.4 is not used as is in our implementation, however. Every

ambient occlusion technique scales this disc to an appropriate size, which is why we

conveniently define the samples to be within the unit circle. In addition, all of our

ambient occlusion methods apply a random, per-pixel rotation to this disc to avoid

banding artifacts.

4.3.2 Hemisphere Sampling

Ambient occlusion methods working in 3D often sample a neighbourhood of points

in the normal-oriented hemisphere centred at the point being shaded. Furthermore,

in many of these techniques, the occlusion factor is also a function of the cosine of

the angle between the normal and the vector from the occluder to the occludee. For

this reason, it is convenient to sample the hemisphere according to a cosine-weighted

distribution, with more samples around the normal than at grazing angles. Such a

distribution is illustrated in figure 4.5.

FIGURE 4.5: An example cosine-weighted hemisphere distribution. The
figure shows the hemispherical samples projected onto the plane.

In our implementation, we use Malley’s method to generate cosine-weighted hemi-

sphere distributions as described in [PH10]. The idea behind this approach is to choose

points uniformly from the unit disk and then map them to the unit hemisphere. The re-

sulting points on the hemisphere follow a cosine distribution. In our implementation,

Chapter 4. Implementation on Mobile 51

we use Poisson disk sampling to generate points on the unit disk, and then map these

to the unit hemisphere.

As with the disc-sampling approach, the hemispherical kernel is scaled appropriately

by each ambient occlusion method and randomised on a per-pixel basis to remove

banding artifacts.

4.3.3 Under-sampling and Per-Pixel Randomisation

Taking only a few number of samples per pixel allows us to approximate ambient oc-

clusion in real-time, but the results suffer from under-sampling. This under-sampling

manifests itself visually in the form of banding artifacts, as illustrated in figure 4.6.

FIGURE 4.6: Banding artifacts in Starcraft 2 ambient occlusion due to
undersampling.

To remove banding artifacts, we randomly rotate the sample kernel per pixel as de-

scribed in [Cha11]. We generate a random set of 16 rotation vectors, stored as a 4 × 4

texture that is tiled all across the screen. Every pixel fetches the rotation vector assigned

to it and orients the sample kernel using that vector. We generate 2D rotation vectors

for 2D ambient occlusion techniques, and 3D rotation vectors for 3D techniques. Fig-

ure 4.7 shows the result of applying this randomisation strategy in Starcraft 2 ambient

occlusion.

FIGURE 4.7: Noise due to random (under)sampling in Starcraft 2 ambi-
ent occlusion.

Chapter 4. Implementation on Mobile 52

4.3.4 Blur

The results in figure 4.7 are far from perfect; randomly rotating the kernel per pixel

introduces noise in the image. In our implementation, we remove noise using two of

the most popular blur filters that are typically used in screen space ambient occlusion:

bilateral filter and separable blur. We use the more affordable separable blur by de-

fault, and save the bilateral filter for higher-end devices. Figure 4.8 shows the result of

blurring the image in figure 4.7 with a separable blur.

FIGURE 4.8: Blur in Starcraft 2 ambient occlusion.

To determine the dimensions of the blur filter kernels, both quality and performance

must be taken into account. A general guideline is to define the blur kernel to have the

same size as the rotation texture. We follow this guideline in our implementation, and

define a blur kernel size of 4× 4 pixels.

4.4 Crytek Ambient Occlusion

Our implementation of Crytek ambient occlusion differs from the original in two points.

First, we disable the range check that avoids taking samples from far away geometry.

As illustrated in figure 4.9, this results in edge detection, but removes the white halos

along the silhouettes of objects and results in less noticeable artifacts along flat surfaces.

We believe this approach results in a more artistic and visually pleasing look. Second,

since half of the samples in Crytek ambient occlusion are deemed to be occluded for

planar surfaces, we remap the occlusion factor from [0, 12] to [0, 1]. The final result can

be seen in figure 4.9b.

To generate the sample kernel, we take the simplistic approach of using a pseudo-

random number generator to directly generate directions on the unit sphere as de-

scribed in [Cha11]. We experiment with different seeds until a reasonable pattern is

produced. The vectors are then scaled so that most of the samples are taken close to the

point being shaded, as described in that same reference. The kernel that we use in our

implementation is the 8-point pattern shown in figure 4.10.

Chapter 4. Implementation on Mobile 53

(A) With range check (B) Without range check.

FIGURE 4.9: Crytek ambient occlusion with and without range check.

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1

FIGURE 4.10: Crytek sample kernel.

To remove banding artifacts, we randomly rotate the sample kernel per pixel as de-

scribed in 4.3.3. If we take a patch of 4 × 4 pixels and draw their rotated kernels in a

single image, we obtain the image shown in figure 4.11.

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

FIGURE 4.11: Crytek sample kernel with per-pixel rotations.

Finally, we remove the noise introduced by random sampling by applying a separable

blur filter as described in section 4.3.4.

4.5 Starcraft 2 Ambient Occlusion

In our implementation of Starcraft 2 ambient occlusion, we weigh the occlusion factor

with the cosine of the angle between the occluder and the occludee, inspired by the real

Chapter 4. Implementation on Mobile 54

ambient occlusion equation. In addition, we use a linear fall-off function to obscure

points based on the Z-distance from the occluder to the occludee, with a range check

on this Z-distance to avoid gathering samples from far-away geometry. Figure 4.12

shows Starcraft 2 ambient occlusion in our test scene.

FIGURE 4.12: Our implementation of Starcraft 2 ambient occlusion.

To generate the sample kernel, we use the approach described in section 4.3.2. We take

the 8-point Poisson disc in figure 4.4 and map it to the unit hemisphere. This results in

the pattern shown in figure 4.13, where the x- and y-coordinates of the hemispherical

points have been projected onto the plane and then plotted.

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

-0.1 -0.05 0 0.05 0.1 0.15 0.2

FIGURE 4.13: Starcraft 2 sample kernel.

To remove banding artifacts, we randomly rotate the sample kernel per pixel as de-

scribed in 4.3.3. If we take a patch of 4 × 4 pixels and draw their rotated kernels in a

single image, we obtain the image shown in figure 4.14.

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

FIGURE 4.14: Stracraft sample kernel with per-pixel rotations.

Chapter 4. Implementation on Mobile 55

Finally, we remove the noise introduced by random sampling by applying a separable

blur filter as described in section 4.3.4.

4.6 Alchemy Ambient Obscurance

Our implementation of Alchemy ambient obscurance is fairly straightforward. We

implement the technique as described in the original paper and tune the algorithm’s

parameters for our particular application. Figure 4.15 shows our implementation of

Alchemy ambient obscurance.

FIGURE 4.15: Our implementation of Alchemy ambient obscurance.

The sample kernel we use in our implementation is the 8-point Poisson disc shown in

figure 4.16. This is the same pattern shown in figure 4.4 of section 4.3.1.

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

FIGURE 4.16: Alchemy sample kernel.

To remove banding artifacts, we randomly rotate the sample kernel per pixel as de-

scribed in 4.3.3. If we take a patch of 4 × 4 pixels and draw their rotated kernels in a

single image, we obtain the image shown in figure 4.17.

Finally, we remove the noise introduced by random sampling by applying a separable

blur filter as described in section 4.3.4.

Chapter 4. Implementation on Mobile 56

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

FIGURE 4.17: Alchemy sample kernel with per-pixel rotations.

4.7 Horizon-Based Ambient Occlusion

We borrow the implementation of horizon-based ambient occlusion from [Aal13] and

apply a slight modification to the sampling scheme used by the original algorithm.

Figure 4.18 shows our implementation of horizon-based ambient occlusion.

FIGURE 4.18: Our implementation of horizon-based ambient occlusion.

In our implementation, we use the sample kernel illustrated in figure 4.19. Instead of

the typical 4 × 4 sampling scheme — four samples along four rays — we use a 2 × 4

scheme — two samples along four rays. This keeps the sample count down the eight,

resulting in a relatively good balance between quality and performance and allowing

us to compare this technique with the other methods.

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

FIGURE 4.19: Horizon-based ambient occlusion sample kernel.

Chapter 4. Implementation on Mobile 57

To remove banding artifacts, we randomly rotate the sample kernel per pixel as de-

scribed in section 4.3.3. However, rotating the kernel with rotation vectors of equal

magnitude would produce two perfect circles, so in addition, we jitter the length of

the rotation vectors using Gaussian noise to randomise the pattern. If we take a patch

of 4 × 4 pixels and draw their rotated kernels in a single image, we obtain the image

shown in figure 4.20.

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

FIGURE 4.20: Horizon-based ambient occlusion sample kernel with per-
pixel rotations.

Finally, we remove the noise introduced by random sampling by applying a separable

blur filter as described in section 4.3.4.

4.8 Unsharp Mask

In our implementation of unsharp masking of the depth buffer, we compute the high

frequency depth buffer by subtracting a blurred version of the buffer from the original,

as described in the paper:

∆D = G ∗D −D

We use a Gaussian blur to blur the depth buffer. For the unsharp mask to produce

noticeable effects, a relatively wide kernel must be used, but the kernel must also be

kept reasonably small to deliver performance. We use a kernel size of 4 × 4 in our

implementation.

Finally, we subtract a scaling λ of the high frequency depth buffer from the image to

darken depth discontinuities, adjusting λ for our particular scene:

I ′ = I + λ∆D

Figure 4.21 shows a side-by-side comparison of our test scene with unsharp masking

on and off.

Chapter 4. Implementation on Mobile 58

(A) Unsharp mask off. (B) Unsharp mask on.

FIGURE 4.21: Scene rendered with and without unsharp masking of the
depth buffer.

4.9 Home-Brewed Ambient Occlusion

As part of our work, we propose a relatively inexpensive ambient occlusion method

based on the other techniques. We call this method home-brewed ambient occlusion. Like

our implementation of Alchemy and other 2D methods, home-brewed ambient occlu-

sion uses the 8-point Poisson disc illustrated in figure 4.4 of section 4.3.1, making its

memory access patterns controllable and coherent. In addition, home-brewed ambient

occlusion does not rely on any projection or unprojection of samples from view space to

texture space and vice versa, giving it a computational advantage over other methods.

As a result, home-brewed ambient occlusion is mobile-friendly and relatively simple

to implement. Figure 4.22 shows home-brewed ambient occlusion applied to our test

scene.

FIGURE 4.22: Home-brewed ambient occlusion.

Home-brewed ambient occlusion defines the occlusion at a point as

AO(p) = 1− 1

N

N
∑

i=1

f(di)

where di is the depth difference between the occluder and the occludee and f is the

fall-off function:

Chapter 4. Implementation on Mobile 59

f(di) = wi ∗ smoothstep(0, 1, (1 + di)
2)

where wi is the dot product between the occludee’s normal Np and the occluders’s

normal Nq:

wi = 1−Np ·Nq

The smoothstep term penalises large depth discontinuities, while the wi term prevents

self-occlusion by making the f(di) term close to zero if the sample is taken from the

same surface as the point being shaded (or, consequently, a surface that is parallel to

the surface of the point).

As with other 2D approaches, the sample kernel that we use in home-brewed ambient

occlusion is the 8-point Poisson disc shown in figure 4.23. This is the same pattern

shown in figure 4.4 of section 4.3.1.

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

FIGURE 4.23: Home-brewed sample kernel.

To remove banding artifacts, we randomly rotate the sample kernel per pixel as de-

scribed in 4.3.3. If we take a patch of 4 × 4 pixels and draw their rotated kernels in a

single image, we obtain the image shown in figure 4.24.

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

FIGURE 4.24: Home-brewed sample kernel with per-pixel rotations.

Finally, we remove the noise introduced by random sampling by applying a separable

blur filter as described in section 4.3.4.

Chapter 4. Implementation on Mobile 60

4.10 Progressive Ambient Occlusion

Progressive ambient occlusion is our second proposal. This technique is not an ambi-

ent occlusion algorithm per se, but a modification that can be applied to all previous

algorithms to speed up their performance. Progressive ambient occlusion can be un-

derstood as a simplification of the temporal approach described in [MSW10], or as the

separable approach described in [Hua+11], but where the computation is separated in

time instead of space.

The idea behind progressive ambient occlusion is to amortise the cost of computing

ambient occlusion across multiple frames, gathering only a fraction of the samples in a

given frame and progressively refining the ambient occlusion of the scene. If an ambi-

ent occlusion algorithm originally takes N samples per pixel, the progressive version of

the algorithm would take a fraction M of the original N samples in a given frame and

average the result with those of the previous frames. In our implementation, we take

M = 4 samples per frame for a total of N = 8 samples. In frame i, we gather half of

the samples and compute an ambient occlusion texture. This texture is averaged with

the texture computed using the other half of the samples in frame i− 1, and the result

is then used as the ambient occlusion term during lighting. This process is illustrated

in figure 4.25.

Partial AO Partial AO

ADD

Final AO

Frame i-1 Frame i

ADD

Final AO

FIGURE 4.25: Schematics of progressive ambient occlusion. An ambient
occlusion texture is computed using half of the samples in a given frame,
and the result averaged with that of the previous frame. The average is
then used to compute the illumination of the current frame. Note that
we do not average the current texture with the average of the previous
frame, but with the texture computed using the other half of the samples

in the previous frame.

Note that we do not average the current ambient occlusion texture with the average

Chapter 4. Implementation on Mobile 61

computed in the previous frame, as that would result in a shading effect similar to

motion blur. We average the current texture with the texture computed using the other

half of the samples in the previous frame; the average of the textures is only used for

rendering in the compositing pass.

Chapter 5

Results

In this chapter, we profile our application and discuss the results obtained. We also

describe the experiments performed throughout the development of the application

that led to the implementation described in the previous chapter.

5.1 Test Setup

In this first section, we describe the test environment that was set up to profile our

implementation. This includes the test scene, profiling tools, and test devices used.

To test the different ambient occlusion methods, we have put together the test scene

illustrated in figure 5.1. This scene is comprised of 61.9k vertices, 66.1k triangles, and

6 textures. These three numbers directly influence the cost of the G-buffer and forward

rendering passes, so we find it noteworthy to briefly describe our test scene here to give

the reader an idea of the complexity of our test scene.

FIGURE 5.1: Our test scene.

In the following sections, we profile our application and show the time spent in each

major stage of the rendering pipeline. To do this, we have written a library to time

regions of code in an application. Since the GPU and CPU work asynchronously, we

make the library issue glFinish() calls before and after every stage of the rendering

pipeline. In doing so, we force the GPU to flush all of its work and obtain the time

spent in that particular stage. Additionally, since issuing glFinish() calls at the

62

Chapter 5. Results 63

start and end of every region and at every frame would make the application run at

a very low frame rate, we gather profiling samples stochastically once every given

number of frames on average instead of doing so at every frame. In this way, we obtain

performance statistics while still being able to interact with the application.

Another issue to consider when profiling screen space ambient occlusion is that perfor-

mance is often a function of the distance from the camera to the visible scene geometry.

For example, Starcraft 2 ambient occlusion samples in view space and then projects the

samples to texture space. If the geometry is close by, the projection of the samples oc-

cupies a wider area in texture space, making texture fetch operations more incoherent

and therefore making the occlusion computation slower. For this reason, we automate

the animation of the camera during profiling to avoid user-introduced bias. In this

animation, the camera orbits around the tank at a constant radius and velocity.

In the sections that follow, we measure the time spent in each of the stages of the ren-

dering pipeline. The measurements shown are always averages, taken during the au-

tomated animation described above across multiple frames. Thus, when we state that

a particular shader or pipeline stage takes so much amount of time to run, we are im-

plicitly referring to the average amount of time.

Finally, in terms of devices used, we have developed our application on a Google

Nexus 7 (2013). Unless otherwise stated, all of the profiling results that follow cor-

respond to this device. We have also profiled our application on a Google Nexus 5

(2013) and on an NVIDIA Shield Tablet K1 (2015). When we show results for these

two devices, we will explicitly state that the results correspond to them and not to the

Nexus 7. Table 5.1 shows the specifications of all these devices, and table 5.2 their GPU

specifications.

Nexus 7 Nexus 5 Shield K1

CPU Quad-core 1.5 GHz Quad-core 2.3 GHz 400 Quad-core 2.2 GHz

GPU Adreno 320 Adreno 330 Tegra K1

RAM 2 GB 2 GB 2 GB

Resolution 1200× 1920 1080× 1920 1920× 1200

TABLE 5.1: Specifications of the devices used to develop and test our
implementation.

5.2 Forward and Deferred Pipelines

As mentioned in section 4.2, we propose two different rendering pipelines for the im-

plementation of screen space ambient occlusion on mobile. In this section, we explain

Chapter 5. Results 64

Adreno 320 Adreno 330 NVIDIA K1

(Nexus 7) (Nexus 5) (Shield K1)

Cores 16 32 192

Core Speed 400 MHz 400-578 MHz 950 MHz

TABLE 5.2: GPU specifications of our test devices.

why we decided to implement the G-buffer pipeline and show the results of our initial

experiments.

As discussed in section 4.2, the downsides of the G-buffer pipeline are:

• OpenGL ES 3.0+ required

• High memory bandwidth requirements

• Multisampling available only with extensions

• Downscaling either impacts final rendering or requires an additional pass

• Normal mapping may require tweaks

We believe the OpenGL ES 3.0+ version requirement is not a major concern, since it is

only a matter of time that 2.0 devices phase out in favour of the more modern 3.0 ones.

In fact, according to Unity’s hardware statistics page, ES 3.0 devices already make up

44.9% of the user base at the time of writing1. In addition, normal mapping can be used

with the G-buffer pipeline; some of the ambient occlusion shaders may just have to be

tweaked to prevent over-occlusion. On the other hand, downscaling and the lack of

multisampling produce pixelation, but since mobile devices put very high resolutions

into small form factors, the result is still acceptable compared to desktop screens. Plus,

rendering at non-native resolutions is often preferable, as discussed in [Fel15]. The

only major concern, therefore, is the memory bandwidth cost of this pipeline.

To gain further insight into the memory bandwidth cost of the G-buffer pipeline, we

profile both the G-buffer and the ND-buffer pipelines and analyse the results. Figure

5.2 shows a performance comparison between the two. On the left, we see how the

ND-buffer pipeline is faster to generate (4.9ms) versus the G-buffer pipeline on the

right (8.8ms). However, this alone does not justify the use of the ND-buffer pipeline.

The ND-buffer pipeline requires a second forward pass, shown as Forward-Composite on

the left. This forward pass is considerably slower than the compositing pass in the G-

buffer pipeline on the right (13.3ms versus 6.3ms). Adding both components together

shows that the G-buffer pipeline is 3.1ms faster than the ND-buffer pipeline (4.9 + 13.3

= 18.2ms, 8.8 + 6.3 = 15.1ms, 18.2 - 15.1 = 3.1ms). To add to this difference, note that

the second forward pass becomes worse with increasing numbers of triangles, whereas

1http://hwstats.unity3d.com/mobile/gpu.html

Chapter 5. Results 65

the performance of the compositing pass in the G-buffer pipeline is only a function

of resolution. Given that our scene is relatively simple in terms of triangle count and

that resolution remains relatively constant throughout devices, we think the G-buffer

pipeline is a better choice than the ND-buffer pipeline.

●

●

●

●

●

●●●●●●

●

●

●

●●●

●

●

●

●●
●

●

●

●●●●

Blur Forward−Composite ND−buffer SSAO

5
1
0

1
5

2
0

Region Time

Region

T
im

e
 (

m
s
)

(A) ND-buffer pipeline with forward final pass.

●

●

●●●●●

●●

●●●●

●

●

●

●

●

●

●

●

●
●

●

●●●
●●

Blur Composite G−buffer SSAO
6

8
1
0

1
2

1
4

1
6

Region Time

Region

T
im

e
 (

m
s
)

(B) G-buffer pipeline with deferred composit-
ing.

FIGURE 5.2: Performance comparison of the ND-buffer and G-buffer
pipelines. Generating an ND-buffer is faster than generating a G-buffer,
but the cost of the second forward pass in the ND-buffer pipeline shifts

the balance towards the G-buffer pipeline.

Having profiled the application, we conclude that the G-buffer pipeline is a better

choice for us. However, a programmer should always consider their options and pro-

file their application to make the right choice. If the application must support OpenGL

ES 2.0 devices, for example, the G-buffer pipeline is simply not an option.

5.3 Depth Precision

One of the earliest experiments we performed was experimenting with different depth

buffer precisions for the depth render target of the application’s G-buffer. In this test,

we save linear depth using different depth texture formats — GL_R8 (8 bits), GL_R16F

(16 bits) and GL_R32F (32 bits) — and analyse the quality and performance of the

Alchemy ambient obscurance algorithm using each of these formats.

Figure 5.3 shows the Alchemy ambient obscurance algorithm using each of the test

formats. As seen in the figure, an 8-bit depth produces unacceptable results. With 16-

and 32-bit depths, the ambient occlusion shader produces reasonable results, with the

quality difference between 16- and 32-bit being negligible for our test scene.

Chapter 5. Results 66

(A) 8-bit depth (GL_R8). (B) 16-bit depth (GL_R16F).

(C) 32-bit depth (GL_R32F).

FIGURE 5.3: Alchemy with different depth buffer precisions.

Since a 16-bit depth texture produces good enough results for us, we use this format in

our implementation to save memory bandwidth versus a 32-bit depth texture. How-

ever, we would still like to understand the performance impact of using this latter one,

since scenes with a greater depth complexity might require higher precision.

In figure 5.4 and table 5.3, we show the time spent on different parts of the rendering

pipeline as well as the overall frame time using 16- and 32-bit depth buffers. As we

can see, a 32-bit depth buffer does have an impact due to higher memory bandwidth

requirements on different parts of the pipeline, namely the G-buffer, ambient occlusion

and blur passes. However, this impact is only minimal, and would be justified in scenes

of great depth complexity where a 16-bit depth buffer would yield errors in the ambient

occlusion computation.

Region 16-bit 32-bit

G-buffer 7.504 7.784

SSAO 17.89 18.02

Blur 6.750 7.438

Frame 34.78 35.77

TABLE 5.3: Time spent in milliseconds on different parts of the pipeline
as well as overall frame time using 16-bit and 32-bit depth buffers. (less

is better).

Chapter 5. Results 67

G-buffer SSAO Blur Frame Time

0

5

10

15

20

25

30

35

40

Depth Precision Performance

16-bit

32-bit

T
im

e
 (

m
s
)

FIGURE 5.4: Time spent on different parts of the pipeline as well as over-
all frame time using 16-bit and 32-bit depth buffers. (less is better).

In conclusion, we think the programmer should choose the lowest precision for the

depth buffer that satisfies their requirements. A lower precision buffer saves memory

bandwidth and translates to higher performance in all stages of the pipeline that re-

quire reading or writing from/to the depth buffer. Using higher precision has only a

minimal impact, however, so the use of a higher precision depth buffer is justified in

scenes of great depth complexity.

5.4 View Space Position Reconstruction

In this test, we experiment with two different methods to reconstruct view space posi-

tion from depth: using the inverse of the projection matrix and using similar triangles2.

Reconstruction using similar triangles requires less float-point operations, both on the

CPU side when inverting the projection matrix and on the GPU side when performing

the actual reconstruction. Our intuition was that the similar triangles approach would

be fastest.

In terms of quality, both methods produce results with negligible differences. Figure

5.5 shows our implementation of Alchemy ambient obscurance using the inverse of the

projection matrix (left) and similar triangles (right).

In terms of performance, the similar triangles method is slightly faster than the projec-

tion inverse method, as illustrated in figure 5.6. From our experiments, the Alchemy

ambient occlusion algorithm runs at 17.9ms using similar triangles and at 19.83ms us-

ing the inverse projection method. This translates to an overall frame time of 34.79ms

using similar triangles and 36.58ms using the inverse projection.

Since using similar triangles to reconstruct position from depth is faster than the pro-

jection inverse method, we use similar triangles in our implementation.

2http://shellblade.net/unprojection.html

Chapter 5. Results 68

(A) Using projection matrix inverse. (B) Using similar triangles.

FIGURE 5.5: View-space position reconstruction using (A) the inverse of
the projection matrix and (B) similar triangles. The quality difference is

negligible.

Similar triangles Projection inverse

0

5

10

15

20

25

AO Time

T
im

e
 (

m
s
)

(A) AO time.

Similar triangles Projection inverse

0

5

10

15

20

25

30

35

40

Frame Time

T
im

e
 (

m
s
)

(B) Frame time.

FIGURE 5.6: Performance comparison of depth reconstruction using
similar triangles and projection inverse (less is better). The left figure
shows ambient occlusion time. The right figure shows overall frame
time. Reconstruction using similar triangles is slightly faster than the

projection inverse method.

5.5 Saving View Space Position Instead of Depth

The next test we performed was saving view space position instead of depth in the

G-buffer. Our intuition was that we could speed up ambient occlusion shaders by

not having to reconstruct position from depth at the cost of increased memory band-

width. In this experiment, we run the Alchemy, Crytek, horizon-based ambient oc-

clusion (HBAO) and Starcraft 2 (SC2) shaders with a depth buffer on one hand and a

position buffer on the other hand. Since the other ambient occlusion techniques work

in 2D space, it makes no sense for them to use a position buffer, so they are excluded

from this experiment.

Figure 5.7 and table 5.4 show the frame times of each of the methods using depth and

position buffers. From these results, we can see that using a depth buffer is only slightly

faster than using a position buffer for most shaders. For the Starcraft 2 shader, the

position buffer is actually faster.

Chapter 5. Results 69

Alchemy Crytek HBAO SC2

0

0.01

0.02

0.03

0.04

0.05

0.06

Frame Time

Depth

Position

T
im

e
 (

m
s
)

FIGURE 5.7: Frame times of ambient occlusion methods using depth and
position buffers. Using a depth buffer is faster for all shaders except for

the Starcraft 2 method.

Technique Depth (ms) Position (ms)

Alchemy 34.78 36.61

Crytek 32.83 35.14

HBAO 51.77 54.94

SC2 49.63 48.05

TABLE 5.4: Frame times of ambient occlusion methods using depth and
positon buffers. Using a depth buffer is faster for all shaders except for

the Starcraft 2 method.

To better understand these results, we profile each of the shaders using depth and po-

sition buffers. Figure 5.8 shows a profiling session for each shader-buffer configuration

pair. Table 5.5 summarises the numerical values behind this figure.

Focusing on the Alchemy ambient obscurance algorithm, we see that, as expected, G-

buffer generation is faster when using a depth buffer than when using a position buffer

(7.5ms versus 8.9ms). On the other hand, the Alchemy shader is also slightly faster

when using a depth buffer than when using a position buffer (17.9ms versus 18.28ms),

so the increased memory bandwidth does outweigh the computation savings. Com-

bining both components, we see that using a depth buffer is overall faster (7.5 + 17.9 =

25.4ms, 8.9 + 18.28 = 27.18ms).

The other ambient occlusion methods exhibit a similar behaviour to that of Alchemy,

except for the Starcraft 2 shader. For this latter one, using a position buffer is slightly

faster than using a depth buffer. Like the other methods, G-buffer generation for Star-

craft 2 ambient occlusion is faster when using a depth buffer versus using a position

buffer (7.5ms versus 9.0ms). However, the shader itself is slower when using a depth

buffer (33.9ms versus 30.6ms). Adding both components together explains why this

method is faster with a position buffer (7.5 + 33.9 = 41.4ms, 9.0 + 30.6 = 39.6ms).

In general, we find the results of this experiment to be inconclusive. A depth buffer

Chapter 5. Results 70

Technique/Buffer Blur (ms) Composite (ms) G-Buffer (ms) SSAO (ms)

Alchemy/Depth 6.730 6.358 7.552 17.89

Alchemy/Position 6.959 6.323 8.919 18.28

Crytek/Depth 6.760 6.344 7.551 15.72

Crytek/Position 6.974 6.341 8.893 16.81

HBAO/Depth 6.725 6.355 7.603 36.34

HBAO/Position 6.920 6.477 8.995 38.42

Starcraft 2/Depth 6.714 6.329 7.561 33.98

Starcraft 2/Position 6.901 6.335 9.039 30.60

TABLE 5.5: Profiling of each of the ambient occlusion methods using
depth and position buffers. The table shows all shader/buffer config-
uration pairs and the time spent in milliseconds in each stage of the

pipeline.

appears to be slightly faster than a position buffer, but the difference is negligible and

the results are not consistent among all ambient occlusion methods. We think the pro-

grammer should profile their application on their target platform and decide which of

the two approaches delivers the best performance. It is for this same reason that we

support both depth and position buffers in our pipeline.

5.6 Saving Normals as RG

In this experiment, we experiment with saving normals into two channels instead of

three. Originally, we would write the x, y, and z components of the normals in an

8-bit RGB texture. In this experiment, we write x and y in an 8-bit RG texture and

reconstruct z in shaders. Since normals are normalised, |N | =
√

x2 + y2 + z2 = 1, and

therefore z =
√

1− x2 − y2. This allows us to save just two channels (x and y) and

reconstruct the third (z).

Figure 5.9 shows the results of this experiment. On the left, we save the xyz compo-

nents of the normals in an RGB texture and then run the Alchemy shader to compute

ambient occlusion. On the right, we save the xy components of the normals in an RG

texture and reconstruct the z component in the shader. The savings are negligible. The

G-buffer pass is somewhat faster (from 6.4ms to 6.2ms), but the ambient occlusion pass

becomes more expensive (from 17.5ms to 17.6ms). Also note that Alchemy only ac-

cesses the normal texture once per fragment. Other techniques access it several times

per fragment, in which case the performance of the ambient occlusion pass would only

become worse.

Chapter 5. Results 71

●

●●

●

●

●

●●

●

●

●
●●

●

●
●

●●●
●

●

●●●
●●●●

●
●●●
●
●●
●
●●●
●●

●

●
●

●

●
●●●

●

●

●●

●

●

●

●●●●●●●●

Blur G−buffer Output SSAO

5
1
0

1
5

2
0

2
5

Region Time

Region

T
im

e
 (

m
s
)

(A) RGB normals.

●
●●

●

●●●●●●●●

●

●

●●

●

●●

●

●●●●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●●
●
●

●

●
●●

●

●

●

●●●
●

●

●
●●

●

●●

●

●●

●

●●
●

●
●

●
●●
●
●
●
●●●●
●●
●●●
●
●●●●
●
●●●●●●●●●●●●
●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●
●●
●

●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●
●●
●●
●
●●●●●●●●●●●●●●●●
●●●●●●●

●

●●●●●●●●●●●●●●●●●
●
●●●●●●●
●●
●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●
●

●

●

●

●●●●●
●●●●●●
●
●●

●

●

●

●

●●●
●
●●

●

●
●●
●●
●
●

●●
●●●●●●●●●●●●

●

●●●●●●●●●●●●●
●●●●●●●

●●●

Blur G−buffer Output SSAO

5
1
0

1
5

2
0

Region Time

Region

T
im

e
 (

m
s
)

(B) RG normals.

FIGURE 5.9: Alchemy shader performance using a (A) RGB normals (B)
RG normals.

In our pipeline, we simply write normals into an RGB texture, since this approach

appears to be faster overall.

5.7 Bilateral Filter and Separable Blur

In this test, we benchmark the bilateral filter method against the separable blur. We

run our implementation of Alchemy ambient obscurance with both blur methods and

measure their performance.

First, as illustrated in figure 5.10, we note that the quality difference between the bilat-

eral filter and the separable blur is negligible. This is especially true on mobile, where

a small form factor is combined with a high screen resolution.

Chapter 5. Results 72

(A) Alchemy using bilateral filter. (B) Alchemy using separable blur.

(C) Alchemy using bilateral filter. (D) Alchemy using separable blur.

FIGURE 5.10: Quality comparison between bilateral filter (A,C) and sep-
arable blur (B,D). Although a difference does exist, we find it to be neg-

ligible, especially on small form factors such as mobile.

Next, we measure the performance of both blur methods. Figure 5.11 shows the results

of this experiment. On the left, we show the time spent by each of the blur methods —

15.87ms by the bilateral filter, and 6.76ms by the separable blur. On the right, we show

the frame time of the entire rendering pipeline when running the Alchemy ambient

obscurance algorithm with each blur method. Alchemy runs at 43.7ms per frame when

using a bilateral filter, and at a considerably faster 35.2ms per frame when using a

separable blur.

Bilateral Separable

0

2

4

6

8

10

12

14

16

18

Blur Time

T
im

e
 (

m
s
)

(A) Blur time.

Bilateral Separable

0

5

10

15

20

25

30

35

40

45

50

Frame Time

T
im

e
 (

m
s
)

(B) Frame time.

FIGURE 5.11: Performance measurements of bilateral filter and separa-
ble blur in the Alchemy ambient obscurance algorithm (less is better).
The separable blur offers a considerable boost in performance on our

target platform.

Chapter 5. Results 73

From this experiment, we conclude that a separable blur is faster than a bilateral filter

on our target mobile platform, despite the former requiring one additional render pass.

5.8 Runtime Performance of Ambient Occlusion Methods

After performing all of the above optimisations, we benchmark each of the screen space

ambient occlusion methods that we have implemented. In each test, we generate a G-

buffer, invoke the ambient occlusion shader, blur the result with a separable blur if

necessary and combine the results with the albedo texture in a final compositing pass.

The results of this benchmark are shown in figures 5.12 and 5.13 and table 5.6. Figure

5.12 shows the time taken by each ambient occlusion shader, omitting G-buffer gen-

eration, blur and compositing. Figure 5.13, on the other hand, shows the frame times

obtained by each of the methods. Table 5.6 shows the numbers behind these two fig-

ures. From the results, we observe that home-brewed ambient occlusion is the fastest

method, followed by Crytek, Alchemy, Starcraft 2, horizon-based ambient occlusion

and the unsharp mask method.

Alchemy Crytek HBAO Home Brewed Starcraft 2 Unsharp Mask

0

10

20

30

40

50

60

70

80

90

Shader Performance

T
im

e
 (

m
s
)

FIGURE 5.12: Shader time of each of the ambient occlusion methods
(Nexus 7, less is better).

Alchemy Crytek HBAO Home Brewed Starcraft 2 Unsharp Mask

0

10

20

30

40

50

60

70

80

90

100

Frame Time

T
im

e
 (

m
s
)

FIGURE 5.13: Frame time of each of the ambient occlusion methods
(Nexus 7, less is better).

Chapter 5. Results 74

Method Shader Time Frame Time

Alchemy 18.26 34.79

Home Brewed 14.76 31.98

Crytek 16.77 32.8

Starcraft 2 30.58 49.62

HBAO 38.25 51.78

Unsharp Mask 81.78 91.18

TABLE 5.6: Shader and frame times of each of the ambient occlusion
methods.

Figures 5.14 and 5.15 show the results of this same experiment on a Nexus 5 device.

Here, we observe that the trend is similar, with Crytek, home-brewed and Alchemy

being the fastest methods, but in a different order. Overall, the shader and frame times

are smaller than on the Nexus 7 device, since the Nexus 5 has a more powerful GPU.

Also note that in figure 5.15, the frame time of the Crytek, home-brewed, and Alchemy

methods appear to be the same. This is because the device has v-sync enabled, in which

case the frame time cannot be smaller than 16.6 ms (a framerate greater than 60 fps).

Alchemy Crytek HBAO Home Brewed Starcraft 2 Unsharp Mask

0

5

10

15

20

25

30

35

Shader Performance

T
im

e
 (

m
s
)

FIGURE 5.14: Shader time of each of the ambient occlusion methods
(Nexus 5, less is better).

Chapter 5. Results 75

Alchemy Crytek HBAO Home Brewed Starcraft 2 Unsharp Mask

0

5

10

15

20

25

30

35

40

45

Frame Time

T
im

e
 (

m
s
)

FIGURE 5.15: Frame time of each of the ambient occlusion methods
(Nexus 5, less is better).

Similarly, figures 5.16 and 5.17 show the shader times and frame times, respectively,

on an NVIDIA Shield K1. Again, the trend repeats itself, albeit in a new order. Here,

Alchemy is the fastest method, followed by Crytek and home-brewed. In addition, the

frame times for each of these methods are again the same due to v-sync.

Alchemy Crytek HBAO Home Brewed Starcraft 2 Unsharp Mask

0

2

4

6

8

10

12

14

Shader Performance

T
im

e
 (

m
s
)

FIGURE 5.16: Shader time of each of the ambient occlusion methods
(NVIDIA Shield K1, less is better).

Alchemy Crytek HBAO Home Brewed Starcraft 2 Unsharp Mask

16.36

16.38

16.4

16.42

16.44

16.46

16.48

16.5

16.52

16.54

16.56

16.58

Frame Time

T
im

e
 (

m
s
)

FIGURE 5.17: Frame time of each of the ambient occlusion methods
(NVIDIA Shield K1, less is better).

Chapter 5. Results 76

Method Depth Normal Sampling Projections Unprojections

Alchemy N+1 1 2D 0 N+1

Home Brewed N+1 N+1 2D 0 0

Crytek N+1 0 3D N N+1

Starcraft 2 N+1 1 3D N N+1

HBAO 1 + R(2 + S) 0 3D 0 1 + R(2 + S)

TABLE 5.7: Ambient occlusion methods listed from fastest to slowest
(the first three swap in ranking based on platform, here we show only
one of the orderings). For each method, we list the number of depth
texture fetches, normal texture fetches, whether samples are gathered in
texture space (2D) or view space (3D), the number of projections from
view space to texture space and the number of unprojections from tex-
ture space to view space. N refers to the number of samples. For HBAO,

R is the number of rays and S the number of samples per ray.

From all of these results, we can conclude that Alchemy, home-brewed and Crytek are

the fastest methods, although they seem to swap positions in the ranking based on the

target platform. On the other hand, HBAO, Starcraft 2 and the unsharp mask method

are the slowest.

From the above results, it appears that the unsharp mask method consistently ranks

as the slowest method. Like the bilateral filter, the unsharp mask algorithm gathers a

square number of samples, and we believe this is the reason of its slow performance.

Comparing the unsharp mask with the other ambient occlusion methods is similar to

comparing the bilateral filter with the separable blur: an area kernel is too expensive

on mobile, and this is what makes the algorithm prohibitively slow.

To gain further insight on the performance of the other ambient occlusion methods, we

have noted down some of their key characteristics in table 5.7. In this table, we show

each of the methods ordered from fastest to slowest. Note that the first three methods

swap in ranking order based on platform, so we show only one of the orderings in

this table. For each method, we note down the number of depth and normal texture

fetches, whether the method gathers samples in view space (3D) or directly in texture

space (2D), as well as the number of projections from view space to texture space and

unprojections from texture space to view space performed. In addition, we use colour

keying to denote positive or negative aspects of the algorithms. Green denotes a pos-

itive aspect, for example, a few number of normal texture fetches, and red a negative

aspect. The names of the methods themselves are also coloured: green denotes a fast

method, and red a slow method.

Several conclusions can be drawn from table 5.7. First, note that even though we cannot

assert that 2D methods (those that sample directly in texture space) are the fastest, since

Crytek is the fastest method on the Nexus 5, what we can assert is that they are always

Chapter 5. Results 77

among the fastest. We believe this is due to their sampling nature. For these methods,

we compute a Poisson disc offline that is then used at runtime to randomly sample

the depth and normal buffers. This approach guarantees that accesses to the depth

and normal textures are coherent, optimising the memory access patterns of these 2D

methods. Given that mobile devices offer very limited memory bandwidth, this leaves

this set of methods at an advantage with respect to the 3D ones.

The second observation we note is that the three fastest methods — Alchemy, home-

brewed, and Crytek — are all computationally inexpensive. On the other hand, Stracraft

2 and HBAO are both relatively expensive in terms of the number of floating-point op-

erations performed. In this way, it seems mobile platforms and their limited compute

power reward those shaders that perform few computations.

The third and final observation that can be drawn from this table is that the three fastest

methods all offer a trade-off between memory savings and compute savings. For ex-

ample, the Alchemy shader performs N+1 unprojections (computationally expensive)

but only accesses the normal texture once (memory savings). On the other hand, the

home-brewed algorithm accesses the normal texture N + 1 times (memory expensive)

but performs no projections or unprojections (computational savings). Finally, the Cry-

tek shader performs N projections and N + 1 unprojections (computationally expen-

sive) but does not access the normal texture at all (memory savings). We believe this

is what causes these three shaders to swap in ranking order in different platforms.

On some of these platforms, the memory savings outweigh the computational ones,

whereas other platforms exhibit the opposite behaviour. As a result, it is unclear which

of the three algorithms is the fastest, and only profiling can tell whether the platform

rewards memory savings over computational ones or vice versa.

5.9 Progressive Ambient Occlusion

In this section, we profile each of the ambient occlusion shaders for which a progressive

implementation makes sense (all but the unsharp mask method) and compare their

performance with their original, non-progressive counterparts.

Figure 5.18 shows the frame times delivered by each of the ambient occlusion methods

with and without the progressive approach. As can be seen in the figure, the pro-

gressive approach significantly speeds up all of the ambient occlusion methods, even

though an extra pass is required to average the results of the current frame’s ambient

occlusion with that of the previous frame.

Chapter 5. Results 78

Alchemy Crytek HBAO Home Brewed Starcraft 2

0

10

20

30

40

50

60

Progressive AO Performance

Original

Progressive

T
im

e
 (

m
s
)

FIGURE 5.18: Frame time of each of the ambient occlusion methods with
and without the progressive approach (less is better).

We can gain further insight into the progressive ambient occlusion approach by pro-

filing each of the methods. Figure 5.19 and table 5.8 show the time spent in each of

the ambient occlusion shaders with and without the progressive approach. Note that

when we measure shader time in the progressive case, this also includes the time spent

averaging one frame’s ambient occlusion with the previous frame’s. In this way, the

shader time of the Alchemy algorithm is in fact 11.55ms - 1.094ms = 10.46ms.

Alchemy Crytek HBAO Home Brewed Starcraft 2

0

5

10

15

20

25

30

35

40

45

Progressive AO Shader Performance

Original

Progressive

T
im

e
 (

m
s
)

FIGURE 5.19: Shader time of each of the ambient occlusion methods
with and without the progressive approach (less is better).

Method Original Progressive Average

Alchemy 18.26 11.55 1.094

Crytek 16.77 10.64 1.071

HBAO 38.25 26.81 1.055

Home Brewed 14.76 9.75 1.059

Starcraft 2 30.58 19.99 1.016

TABLE 5.8: Shader time of each of the ambient occlusion methods with
and without the progressive approach (less is better).

Chapter 5. Results 79

Figure 5.20 shows the results of profiling each of the ambient occlusion methods using

the progressive approach. In these results we introduce one new region, labelled PAVG,

which refers to the average done to add the contribution of the previous frame’s ambi-

ent occlusion with that of the current frame’s. Again, when we measure the time spent

in the ambient occlusion shader (SSAO), this also includes the time spent computing

the average (PAVG). In all cases, we see how the ambient occlusion shader sees its per-

formance boosted at the cost of a 1.1ms average. Overall, the progressive approach

yields faster ambient occlusion computations, despite the added cost of the average

pass.

To conclude this section, it is worth noting that the progressive approach does not come

for free. Even though performance is indeed boosted, progressive ambient occlusion

introduces some minor flickering when the camera is animated. This flickering is exag-

gerated the lower the framerate is. Since we use the previous frame’s ambient occlusion

in the current frame’s, the lower the framerate, the greater the time between both ambi-

ent occlusion computations, and the more incorrect the progressive approach becomes.

As a consequence, flickering is introduced.

5.10 Qualitative Results and Comparison

In this section, we provide a qualitative comparison among all our ambient occlusion

implementations.

5.10.1 Crytek Ambient Occlusion

Crytek ambient occlusion is the second fastest method from our results. However, this

speed comes at a cost: the approach effectively throws away half of the samples by

sampling inside a sphere. For planar surfaces, half of the samples are deemed to lie

behind the surface, having no real contribution to the ambient occlusion computation.

For this reason, we prefer other methods over Crytek ambient occlusion.

5.10.2 Starcraft 2 Ambient Occlusion

Starcraft 2 ambient occlusion improves on Crytek’s method by sampling inside the

normal-oriented hemisphere. While the Starcraft 2 method produces excellent results,

the cost of unprojecting and projecting points to and from view space inside a loop is

currently too expensive for most mobile platforms. For this reason, we would prefer

a method in which the cost of projection and unprojection is not linear with respect to

the number of samples, but constant or zero altogether.

Chapter 5. Results 80

5.10.3 Alchemy Ambient Obscurance

Alchemy ambient obscurance is by far our favourite approach, and this is what we

would implement in both applications targeting mobile and desktop. Alchemy is intu-

itive, efficient, simple to implement, provides artistic control via four relatively inde-

pendent parameters and produces virtually no flicker with progressive mode. While

not the fastest approach, Alchemy is the method that maximises both quality and per-

formance simultaneously.

5.10.4 Horizon-Based Ambient Occlusion

Our main issue when implementing horizon-based ambient occlusion was getting it

to produce reasonable results with just eight samples. While this approach produces

reasonable results with sixteen samples (a 4 × 4 sampling pattern), getting it to work

with fewer samples posed as a challenge. In the end, we wrote an implementation of

the algorithm that produces reasonable results, but the shader is too expensive to be

run on mobile.

5.10.5 Home-Brewed Ambient Occlusion

Home-brewed ambient occlusion is fast and simple to implement. However, this ap-

proach is not a true ambient occlusion method. The home-brewed approach produces

edge detection and gives the scene an overall artistic look, which may or may not be

desirable depending on the application. We would implement home-brewed ambient

occlusion only where this artistic effect is wanted. In addition, this method is the fastest

from our results, so it is indeed one we would not automatically discard.

5.10.6 Unsharp Masking of the Depth Buffer

This method originally seemed promising. The method samples a rectangle centred at

every pixel, so unlike random sampling, texture fetches are coherent. In addition, since

this method does not rely on random sampling, no blurring of the ambient occlusion is

needed to remove noise. However, we found the rectangle kernel to be too expensive

on mobile platforms. For this method to produce relatively far-field effects, a large

area must be sampled, increasing the runtime complexity of the shader. Otherwise, the

method produces an effect similar to edge detection, which is unacceptable if ambient

occlusion is what we are after.

Chapter 5. Results 81

●●●●

●

●●
●●

●●●●
●●●●●

●

●

●

●

●

●●

●

●●

Blur Composite G−buffer SSAO

6
8

1
0

1
2

1
4

1
6

1
8

2
0

Region Time

Region

T
im

e
 (

m
s
)

(A) Alchemy (depth).

●●●●●●●
●
●●●●●●●●●●●●

●●●
●●
●●●●●●●●

●

●

●

●

●

●

●

Blur Composite G−buffer SSAO

1
0

1
5

2
0

Region Time

Region

T
im

e
 (

m
s
)

(B) Alchemy (position).

●● ●

●●●●●●

●●

●●
●●●●●●

●

●

●●

●

●

●

●

●●

Blur Composite G−buffer SSAO

6
8

1
0

1
2

1
4

1
6

Region Time

Region

T
im

e
 (

m
s
)

(C) Crytek (depth).

●●
●●●●●●●●
●●
●

●

●●●
●●●●●●●

●
●●●●●●●

●

●

●●●

●●●
●
●

●

●

●

●●

Blur Composite G−buffer SSAO
6

8
1
0

1
2

1
4

1
6

1
8

Region Time

Region

T
im

e
 (

m
s
)

(D) Crytek (position).

●●
●●●
●●
●●●

●
●●●●

●

●
●
●

●
●●●

●●

●

Blur Composite G−buffer SSAO

5
1
0

1
5

2
0

2
5

3
0

3
5

Region Time

Region

T
im

e
 (

m
s
)

(E) HBAO (depth).

●●●●●●●●
●
●
●●●
●
●●●

●

●●●

●●●

●●

●

●●
●●
●

●

●

●●

Blur Composite G−buffer SSAO

1
0

2
0

3
0

4
0

Region Time

Region

T
im

e
 (

m
s
)

(F) HBAO (position).

●●●
●●●
●
●
●●●●
●
●●●
●●●●●●●●●

●

●

●
●

●●●

●●

●

Blur Composite G−buffer SSAO

5
1
0

1
5

2
0

2
5

3
0

3
5

Region Time

Region

T
im

e
 (

m
s
)

(G) SC2 (depth).

●●●●●●●●
●●
●●●●
●

●

●●

●

●

●
●

Blur Composite G−buffer SSAO

1
0

1
5

2
0

2
5

3
0

Region Time

Region

T
im

e
 (

m
s
)

(H) SC2 (position).

FIGURE 5.8: Profiling of each of the ambient occlusion methods using
depth and position buffers.

Chapter 5. Results 82

●

●

●

●●

●

●

●
●●

●

●

●

●

●

Blur Composite G−buffer PAVG SSAO

2
4

6
8

1
0

1
2

1
4

Region Time

Region

T
im

e
 (

m
s
)

(A) Alchemy.

●

●

●●

●

●
●
●

●
●
●●●●●

●

●●

●●●●

●

Blur Composite G−buffer PAVG SSAO

2
4

6
8

1
0

1
2

1
4

Region Time

Region

T
im

e
 (

m
s
)

(B) Crytek.

●
●●●●●●●●●
●●●●●●●●
●●●●

●
●

●

●

●

●

●

●

●●

●●

Blur Composite G−buffer PAVG SSAO

0
5

1
0

1
5

2
0

2
5

3
0

Region Time

Region

T
im

e
 (

m
s
)

(C) HBAO.

● ●

●
●

●

●

●

Blur Composite G−buffer PAVG SSAO

2
4

6
8

1
0

1
2

Region Time

Region

T
im

e
 (

m
s
)

(D) Home-Brewed.

●●●●●●●●●

●

●●

●

●

●

●●

●●
●

Blur Composite G−buffer PAVG SSAO

5
1
0

1
5

2
0

Region Time

Region

T
im

e
 (

m
s
)

(E) Starcraft 2.

FIGURE 5.20: Performance of ambient occlusion methods with the pro-
gressive approach. Averaging the two partial ambient occlusion compu-

tation has a minimal impact on performance in all algorithms.

Chapter 6

Conclusions

Ambient occlusion is an approximation to global illumination that shades points as a

function of their visibility, with occluded points appearing darker than non-occluded

ones. While ambient occlusion is a rather crude simplification of the rendering equa-

tion, its computation in real-time is prohibitive. Instead, approximations to true ambi-

ent occlusion are typically used in real-time computer graphics.

One such approximation is screen space ambient occlusion. The main observation be-

hind this technique is that a pair of depth and normal buffers provide an albeit crude,

but nevertheless useful approximation to the 3D geometry of a scene. Screen space am-

bient occlusion methods use a pair of depth and normal buffers to approximate the am-

bient occlusion at every pixel of the screen. As a consequence, these set of techniques

are relatively inexpensive to compute and suitable for real-time computer graphics ap-

plications.

The popularity of screen space ambient occlusion in real-time computer graphics appli-

cations such as PC games has only increased in the recent years. Its affordable computa-

tion cost, scalability and the fact that it can be combined with other global illumination

techniques make it an excellent choice for these applications.

Unfortunately, the use of global illumination techniques in mobile games and other

mobile graphics applications has traditionally been very limited. On mobile, illumina-

tion is usually baked for performance reasons, since many of these devices are still not

capable of running global illumination techniques at reasonable frame rates.

While still behind desktop GPUs, mobile GPUs are evolving very rapidly. GPUs such

as the Adreno 400 and 500 series or NVIDIA’s K1 offer a considerable increase in com-

puter power with respect to previous generation GPUs, and the trend is only going

higher.

In this work, we study the implementation of screen space ambient occlusion on mo-

bile. We implement several of the most popular techniques and evaluate their perfor-

mance on multiple devices. In addition, we develop two rendering pipelines to support

these techniques and that complement each other in terms of trade-offs. We profile and

study each of the stages of these two pipelines, justifying our design decisions along

83

Chapter 6. Conclusions 84

the way. In addition, we propose a screen space ambient occlusion method that is com-

putationally inexpensive and relatively simple to implement. Finally, we propose a

modification that can be applied to any screen space ambient occlusion method. This

modification boosts the performance of screen space ambient occlusion methods by

computing only a fraction of the occlusion in a given frame and progressively refining

it in subsequent frames.

From our results, we see how screen space ambient occlusion can be computed in real-

time in middle end devices such as Google’s Nexus 7 (2013) and at reasonable frame

rates (30-40 fps) using our pipeline and optimisations. On higher end devices such as

Google’s Nexus 5 or NVIDIA’s Shield K1, many of the algorithms run at 60+ fps, saving

part of the computational budget and leaving room for other effects.

In conclusion, we think screen space ambient occlusion is indeed possible and feasible

on recent mobile devices such as Google’s Nexus 5 or NVIDIA’s Shield K1. Judging

by the trends and the rapid evolution of mobile GPUs, we think it is only a matter of

time that screen space ambient occlusion and other, more complex global illumination

techniques become standard in the mobile space.

6.1 Future Work

Our work is time-bound, and we have consequently not been able to experiment as

much as we initially wished. In the future, we would like to improve on our work by

developing several areas of potential research.

One such area is the development of non-physically based approximations to ambi-

ent occlusion. We believe such approximations could be designed with texture access

coherency in mind to provide fast approximations of ambient occlusion real-time.

Similarly, we would like to gain further insight into the implications of incoherent tex-

ture access on mobile platforms, and continue development on sampling strategies and

sampling patterns to optimise memory access patterns. Given that mobile devices of-

fer very limited memory bandwidth compared to desktop GPUs, we believe additional

performance can be obtained by carefully designing such sampling strategies.

With the introduction of OpenGL ES 3.1, mobile devices supporting this version of the

standard are now capable of running compute shaders. Compute shaders make the

implementation of volume-based ambient occlusion approaches relatively simple, and

this is another area of research we would like to explore. A volume-based approach

would be decoupled from the high screen resolution offered by mobile devices, and

relatively decoupled from scene complexity. In addition, no G-buffer should be needed

for this set of techniques, and the illumination could be simply computed in a forward

pass after using the volume to compute the ambient occlusion of the scene.

Appendix A

Ambient Occlusion Shaders

Crytek

// Header defined in client code

//

//#version 300 es

//#define NSAMPLES 8

//#define NSAMPLESf 8.0

#define DEPTH(p) (texture(Depth, p).r)

precision highp float;

const float Sigma = 1.1;

uniform sampler2D Depth;

uniform sampler2D Rotation;

uniform mat4 Projection;

uniform vec3 Samples[NSAMPLES];

uniform float Radius;

uniform float RotationWidth;

uniform float Far;

uniform float Near;

uniform vec2 RightTop;

in vec2 Texcoord;

layout (location = 0) out float AO;

vec3 unproject (vec2 st, float d)

{

st = st*2.0 - 1.0;

vec2 pnear = st * RightTop;

float pz = -d*Far;

return vec3(-pz*pnear.x / Near, -pz*pnear.y / Near, pz);

85

Appendix A. Ambient Occlusion Shaders 86

}

vec3 unproject (vec2 st) { return unproject(st, DEPTH(st)); }

vec3 project (vec3 p)

{

vec4 proj = Projection * vec4(p,1.0); // coords in [-w,w]

vec3 ndc = proj.xyz/proj.w; // ndc coords in [-1,1]

return vec3(ndc.xy*0.5 + 0.5, -p.z/Far); // map from [-1,1] to

[0,1]

}

// p = occludee

// q = occludder

void main ()

{

// Occludee data

vec2 pfrag = Texcoord; // frag in [0,1]

float pdepth = DEPTH(pfrag);

vec3 pview = unproject(pfrag, pdepth);

vec2 rotst = gl_FragCoord.xy / RotationWidth;

vec3 rvec = texture(Rotation, rotst).xyz*2.0 - 1.0;

// Compute AO factor.

AO = 0.0;

for (int i = 0; i < NSAMPLES; ++i)

{

// Get a random sample and rotate it using the random rotation

vector for this fragment.

vec3 sampleVec = reflect(Samples[i], rvec);

vec3 sampleView = pview + sampleVec;

// Compute q in view space and vector from p to q.

vec3 projectedSample = project(sampleView);

vec3 qview = unproject(projectedSample.st);

float qdepth = DEPTH(projectedSample.st);

vec3 v = qview - pview;

// Range check.

// Disabling range check results in edge detection, but gets

rid of white halos and gives

// the AO an overall better (and more artistic) look. It also

results in less noticeable

// artifacts on the floor.

//float w = abs(pview.z - qview.z) < Radius ? 1.0 : 0.0;

Appendix A. Ambient Occlusion Shaders 87

AO += step(qdepth, projectedSample.z);

}

AO = 1.0 - Sigma*AO/NSAMPLESf;

if (pdepth > 0.99) AO = 1.0;

// Half of the samples are occluded, so AO mostly lies in [0,

0.5] except for edges.

// Remap to [0,1].

AO = AO*2.0; // now remap to [0,1]

}

Starcraft 2

// Header defined in client code

//

//#version 300 es

//#define NSAMPLES 8

//#define NSAMPLESf 8.0

#define DEPTH(p) (texture(Depth, p).r)

#define NORMAL(p) (texture(Normal, p).rgb*2.0 - 1.0)

precision highp float;

const float Sigma = 0.8;

const float Bias = 0.35;

uniform sampler2D Depth;

uniform sampler2D Normal;

uniform sampler2D Rotation;

uniform mat4 Projection;

uniform mat4 IProjection;

uniform vec3 Samples[NSAMPLES];

uniform float Radius;

uniform float RotationWidth;

uniform float Near;

uniform float Far;

uniform vec2 RightTop;

in vec2 Texcoord;

layout (location = 0) out float AO;

vec3 unproject (vec2 st, float d)

{

Appendix A. Ambient Occlusion Shaders 88

st = st*2.0 - 1.0;

vec2 pnear = st * RightTop;

float pz = -d*Far;

return vec3(-pz*pnear.x / Near, -pz*pnear.y / Near, pz);

}

vec3 unproject (vec2 st) { return unproject(st, DEPTH(st)); }

vec3 project (vec3 p)

{

vec4 proj = Projection * vec4(p,1.0); // coords in [-w,w]

vec3 ndc = proj.xyz/proj.w; // ndc coords in [-1,1]

return vec3(ndc.xy*0.5 + 0.5, -p.z/Far); // map from [-1,1] to

[0,1]

}

// p = occludee

// q = occludder

void main ()

{

// Occludee data

vec2 pfrag = Texcoord; // frag in [0,1]

float pdepth = DEPTH(pfrag);

vec3 pnormal = NORMAL(pfrag);

vec3 pview = unproject(pfrag, pdepth); // fragment position in

view space.

// TBN matrix

vec2 rotst = gl_FragCoord.xy / RotationWidth;

vec3 rvec = texture(Rotation, rotst).xyz*2.0 - 1.0;

vec3 tangent = normalize(rvec - pnormal * dot(rvec, pnormal));

vec3 bitangent = cross(pnormal, tangent);

mat3 tbn = mat3(tangent, bitangent, pnormal);

// Compute AO factor.

AO = 0.0;

for (int i = 0; i < NSAMPLES; ++i) {

// Get a random sample and rotate it using the random rotation

vector for this fragment.

vec3 sampleVec = tbn * Samples[i];

vec3 sampleView = pview + sampleVec;

// Compute q in view space and vector from p to q.

vec3 projectedSample = project(sampleView);

float qdepth = DEPTH(projectedSample.st);

vec3 qview = unproject(projectedSample.st, qdepth);

vec3 v = qview - pview;

Appendix A. Ambient Occlusion Shaders 89

// Range check.

float w = abs(pview.z - qview.z) - Bias < Radius ? 1.0 : 0.0;

// Use cos(angle) between sample point and q as a weight.

w *= max(0.0, dot(normalize(v), pnormal));

AO += w * step(qdepth, projectedSample.z);

}

AO = 1.0 - Sigma*AO/NSAMPLESf;

if (pdepth > 0.99) AO = 1.0; // Do not occlude background

}

Alchemy

// Header defined in client code

//

//#version 300 es

//#define NSAMPLES 8

//#define NSAMPLESf 8.0

#define DEPTH(p) (texture(Depth, p).r)

#define NORMAL(p) (texture(Normal, p).rgb*2.0 - 1.0)

precision highp float;

const float Beta = 0.005;

const float Eps = 0.003;

const float Sigma = 0.09;

//uniform sampler2D Depth;

uniform sampler2D Depth;

uniform sampler2D Normal;

uniform sampler2D Rotation;

uniform mat4 IProjection;

// Samples along ray.

// Samples are scaled by the view space hemisphere radius and the

texture space

// scaling factor. The samples need only be divided by view space z

to obtain the

// final vector length.

uniform vec2 Samples[NSAMPLES];

uniform float RotationWidth;

uniform float Far;

uniform float Near;

Appendix A. Ambient Occlusion Shaders 90

uniform vec2 RightTop;

in vec2 Texcoord;

layout (location = 0) out float AO;

// Unproject the given point in texture coordinates to view space

coordinates.

// (s,t, linear depth) -> (x,y,z)

vec3 unproject (vec2 st, float d)

{

st = st*2.0 - 1.0;

vec2 pnear = st * RightTop;

float pz = -d*Far;

return vec3(-pz*pnear.x / Near, -pz*pnear.y / Near, pz);

}

vec3 unproject (vec2 st) { return unproject(st, DEPTH(st)); }

void main ()

{

vec2 pfrag = Texcoord; // frag in [0,1]

float pdepth = DEPTH(pfrag);

vec3 pnormal = NORMAL(pfrag);

vec3 pview = unproject(pfrag, pdepth);

vec2 rotst = gl_FragCoord.xy / RotationWidth;

vec2 rvec = texture(Rotation, rotst).xy*2.0 - 1.0;

AO = 0.0;

for (int i = 0; i < NSAMPLES; ++i)

{

vec2 svec = reflect(Samples[i], rvec) / -pview.z;

vec2 qfrag = pfrag + svec;

vec3 qview = unproject(qfrag);

vec3 v = qview - pview;

AO += max(0.0, (dot(v,pnormal) - Beta) / (dot(v,v) + Eps));

}

AO = max(0.0, 1.0 - 2.0*Sigma/NSAMPLESf*AO);

if (pdepth > 0.99) AO = 1.0; // Do not occlude background

}

HBAO

// Header defined in client code

Appendix A. Ambient Occlusion Shaders 91

//

//#version 300 es

//#define N_SAMPLES_PER_RAY 2

//#define N_SAMPLES_PER_RAYf 2.0

#define N_RAYS 4

#define N_RAYSf 4.0

#define DEPTH(p) (texture(Depth, p).r)

#define RAD 0.01745329251

precision highp float;

const float Bias = 35.0*RAD;

const float Sigma = 2.0;

uniform sampler2D Depth;

uniform sampler2D Rotation;

// Samples along ray.

// Samples are scaled by the view space hemisphere radius and the

texture space

// scaling factor. The samples need only be divided by view space z

to obtain the

// final vector length.

//

// Samples are also jittered using a normal distribution to reduce

artifacts.

uniform vec2 RaymarchDir[N_RAYS];

uniform float Samples[N_SAMPLES_PER_RAY];

uniform float RadiusSquared; // hemisphere radius squared

uniform float RotationWidth;

uniform float Near;

uniform float Far;

uniform vec2 RightTop;

in vec2 Texcoord;

layout (location = 0) out float AO;

vec3 unproject (vec2 st, float d)

{

st = st*2.0 - 1.0;

vec2 pnear = st * RightTop;

float pz = -d*Far;

return vec3(-pz*pnear.x / Near, -pz*pnear.y / Near, pz);

Appendix A. Ambient Occlusion Shaders 92

}

vec3 unproject (vec2 st) { return unproject(st, DEPTH(st)); }

// Return sin(x) given tan(x)

float tan2sin (float tan_x)

{

return tan_x * pow(tan_x*tan_x + 1.0, -0.5);

}

// p = occludee

// q = occludder

void main ()

{

vec2 pfrag = Texcoord; // frag in [0,1]

vec3 pview = unproject(pfrag);

// compute random rotation

vec2 rotst = gl_FragCoord.xy / RotationWidth;

vec2 rvec = texture(Rotation, rotst).xy*2.0 - 1.0;

mat2 TN = mat2(rvec, vec2(-rvec.y, rvec.x));

// compute derivatives to later find the tangent vector

vec2 depth_texel_size = vec2(1.0) / vec2(textureSize(Depth,0));

AO = 0.0;

for (int i = 0; i < N_RAYS; ++i)

{

vec2 dir = TN*RaymarchDir[i];

vec3 pright = unproject(pfrag + dir*depth_texel_size);

vec3 pleft = unproject(pfrag - dir*depth_texel_size);

vec3 tangent = pright-pleft; // no need to normalise

// initialise the maximum seen horizon angle to the tangent

angle

float tan_max_horizon = tangent.z / length(tangent.xy) +

tan(Bias);

float sin_max_horizon = tan2sin(tan_max_horizon);

// raymarch depth buffer

for (int j = 0; j < N_SAMPLES_PER_RAY; ++j)

{

vec2 qfrag = pfrag + Samples[j]*dir / -pview.z;

vec3 qview = unproject(qfrag);

vec3 horizon = qview - pview;

float horizon_length_squared = dot(horizon,horizon);

float tan_horizon = horizon.z / length(horizon.xy);

Appendix A. Ambient Occlusion Shaders 93

// if K <= 1, then the sample is within the hemisphere

radius

float K = horizon_length_squared / RadiusSquared;

if (K <= 1.0 && tan_horizon > tan_max_horizon)

{

float sin_horizon =

tan2sin(tan_horizon);//*sign(Samples[j]);

AO += (sin_horizon - sin_max_horizon) * (1.0 - K);

tan_max_horizon = tan_horizon;

sin_max_horizon = sin_horizon;

}

}

}

AO = 1.0 - Sigma*AO/(N_RAYSf);

}

Home-Brewed

// Header defined in client code

//

//#version 300 es

//#define NSAMPLES 8

//#define NSAMPLESf 8.0

#define DEPTH(p) (texture(Depth, p).r)

#define NORMAL(p) (texture(Normal, p).rgb*2.0 - 1.0)

precision highp float;

uniform sampler2D Depth;

uniform sampler2D Normal;

uniform sampler2D Rotation;

uniform vec2 Samples[NSAMPLES];

uniform float RotationWidth;

in vec2 Texcoord;

layout (location = 0) out float AO;

void main ()

{

vec2 pfrag = Texcoord; // fragment position in [0,1]

float pdepth = DEPTH(pfrag);

Appendix A. Ambient Occlusion Shaders 94

vec3 pnormal = NORMAL(pfrag);

vec2 rotst = gl_FragCoord.xy / RotationWidth;

vec2 rvec = texture(Rotation, rotst).xy*2.0 - 1.0;

AO = 0.0;

for (int i = 0; i < NSAMPLES; ++i)

{

vec2 qfrag = pfrag + reflect(Samples[i].xy, rvec) / pdepth;

float qdepth = DEPTH(qfrag);

vec3 qnormal = NORMAL(qfrag);

float diff = max(0.0, qdepth - pdepth);

// Avoid self-shadowing

float w = 1.0 - dot(pnormal, qnormal);

// Penalise large depth discontinuities

float odiff = 1.0 + diff;

w *= smoothstep(0.0, 1.0, odiff*odiff);

AO += w * (1.0 - diff);

}

AO = 1.0 - AO/NSAMPLESf;

}

Unsharp Mask

#version 300 es

precision highp float;

uniform sampler2D Input;

uniform vec2 TexelSize;

uniform float KernelSize;

uniform float A;

uniform float K;

out float Output;

in vec2 Texcoord;

void main ()

{

Appendix A. Ambient Occlusion Shaders 95

float Blur = 0.0;

float W = 0.0;

for (float x = -KernelSize; x <= KernelSize; x += 1.0)

{

for (float y = -KernelSize; y <= KernelSize; y += 1.0)

{

vec2 blurSample = Texcoord + vec2(x,y) * TexelSize;

vec2 v = blurSample - Texcoord;

float w = A * exp(-dot(v,v) * K);

Blur += texture(Input, blurSample).r * w;

W += w;

}

}

Blur = Blur / W;

float In = texture(Input, Texcoord).r;

Output = (In - Blur)*0.5 + 0.5;

};

Appendix B

Blur Filters

Bilateral Filter

#version 300 es

#define DEPTH(p) (texture(Depth,p).r)

precision highp float;

uniform sampler2D Input;

uniform sampler2D Depth;

uniform vec2 TexelSize;

uniform float KernelSize;

uniform float Far;

// pre-computed gaussian filter constants

uniform float A;

uniform float B;

uniform float K;

out float Output;

in vec2 Texcoord;

void main ()

{

float pdepth = DEPTH(Texcoord);

Output = 0.0;

float W = 0.0;

for (float x = -KernelSize; x <= KernelSize; x += 1.0)

{

for (float y = -KernelSize; y <= KernelSize; y += 1.0)

{

vec2 blurSample = Texcoord + vec2(x,y) * TexelSize;

96

Appendix B. Blur Filters 97

// space weight

vec2 v = blurSample - Texcoord;

float w = A * exp(-dot(v,v) * K);

// range weight

float qdepth = DEPTH(blurSample);

w *= A * exp(-abs(pdepth - qdepth) * B);

Output += texture(Input, blurSample).r * w;

W += w;

}

}

Output = Output / W;

}

Separable Blur

#version 300 es

#define DEPTH(p) (texture(Depth,p).r)

precision highp float;

uniform sampler2D Input;

uniform sampler2D Depth;

uniform float TexelSize; // texel size across blur direction (x or y)

uniform float KernelSize;

uniform float Far;

uniform vec2 Dir; // blur direction

// pre-computed gaussian filter constants

uniform float A;

uniform float B;

uniform float K;

out float Output;

in vec2 Texcoord;

void main ()

{

float pdepth = DEPTH(Texcoord);

Output = 0.0;

Appendix B. Blur Filters 98

float W = 0.0;

for (float k = -KernelSize; k <= KernelSize; k += 1.0)

{

vec2 blurSample = Texcoord + k*Dir * TexelSize;

// space weight

vec2 v = blurSample - Texcoord;

float w = A * exp(-dot(v,v) * K);

// range weight

float qdepth = DEPTH(blurSample);

w *= A * exp(-abs(pdepth - qdepth) * B);

Output += texture(Input, blurSample).r * w;

W += w;

}

Output = Output / W;

}

Bibliography

[Aal13] Frederik Peter Aalund. “A Comparative Study of Screen-Space Ambient

Occlusion Methods”. 2013. URL: http://frederikaalund.com/a-

comparative-study-of-screen-space-ambient-occlusion-

methods/.

[Amd] “High Bandwidth Memory | Reinventing Memory Technology”. In: ().

[Bri07] Robert Bridson. “Fast Poisson Disk Sampling in Arbitrary Dimensions”.

In: ACM SIGGRAPH 2007 Sketches. SIGGRAPH ’07. San Diego, California:

ACM, 2007. DOI: 10.1145/1278780.1278807. URL: http://doi.

acm.org/10.1145/1278780.1278807.

[BSD08] Louis Bavoil, Miguel Sainz, and Rouslan Dimitrov. “Image-space Horizon-

based Ambient Occlusion”. In: ACM SIGGRAPH 2008 Talks. SIGGRAPH

’08. Los Angeles, California: ACM, 2008, 22:1–22:1. ISBN: 978-1-60558-343-

3. DOI: 10.1145/1401032.1401061. URL: http://doi.acm.org/

10.1145/1401032.1401061.

[Cha11] John Chapman. “SSAO Tutorial”. In: (2011).

[Fel15] Mark Feldman. “Adreno Rendering Tutorial 1: Choosing Resolution”. In:

(2015). URL: https://developer.qualcomm.com/software/adreno-

gpu-sdk/tutorial-videos.

[FM08] Dominic Filion and Rob McNaughton. “Effects & Techniques”. In: ACM

SIGGRAPH 2008 Games. SIGGRAPH ’08. Los Angeles, California: ACM,

2008, pp. 133–164. DOI: 10.1145/1404435.1404441. URL: http://

doi.acm.org/10.1145/1404435.1404441.

[Fol14] Denis Foley. “NVLink, Pascal and Stacked Memory: Feeding the Appetite

for Big Data”. In: (2014).

[Gre09] Simon Green. “NVIDIA Effects, GDC 2009”. In: (2009). URL: http://

www.slideshare.net/IGDA_London/nvidia-effects-gdc09.

[Hua+11] Jing Huang et al. “Separable Approximation of Ambient Occlusion”. In:

Eurographics 2011 - Short papers. 2011.

[Ios] “OpenGL ES Programming Guide for iOS”. In: (). URL: https://developer.

apple.com/library/ios/documentation/3DDrawing/Conceptual/

OpenGLES _ ProgrammingGuide / Introduction / Introduction .

html.

99

BIBLIOGRAPHY 100

[KL05a] Janne Kontkanen and Samuli Laine. “Ambient Occlusion Fields”. In: Pro-

ceedings of ACM SIGGRAPH 2005 Symposium on Interactive 3D Graphics and

Games. ACM Press, 2005, pp. 41–48.

[KL05b] Janne Kontkanen and Samuli Laine. “Ambient Occlusion Fields”. In: Pro-

ceedings of the 2005 Symposium on Interactive 3D Graphics and Games. I3D ’05.

Washington, District of Columbia: ACM, 2005, pp. 41–48. ISBN: 1-59593-

013-2. DOI: 10.1145/1053427.1053434. URL: http://doi.acm.

org/10.1145/1053427.1053434.

[KS11] Brian Klug and Anand Lal Shimpi. “Understanding Rendering Techniques”.

In: (2011). URL: http://www.anandtech.com/show/4686/samsung-

galaxy-s-2-international-review-the-best-redefined/15.

[LCD06] Thomas Luft, Carsten Colditz, and Oliver Deussen. “Image Enhancement

by Unsharp Masking the Depth Buffer”. In: ACM SIGGRAPH 2006 Papers.

SIGGRAPH ’06. Boston, Massachusetts: ACM, 2006, pp. 1206–1213. ISBN:

1-59593-364-6. DOI: 10.1145/1179352.1142016. URL: http://doi.

acm.org/10.1145/1179352.1142016.

[McG+11] Morgan McGuire et al. “The Alchemy Screen-Space Ambient Obscurance

Algorithm”. In: High-Performance Graphics 2011. Vancouver, BC, Canada,

2011. URL: http://graphics.cs.williams.edu/papers/AlchemyHPG11/.

[McG10] Morgan McGuire. “Ambient Occlusion Volumes”. In: Proceedings of High

Performance Graphics 2010. Saarbrucken, Germany, 2010. URL: http://

graphics.cs.williams.edu/papers/AOVHPG10.

[Mer12] Bruce Merry. “Performance Tuning for Tile-Based Architectures”. In: OpenGL

Insights. Ed. by Patrick Cozzi and Christophe Riccio. http://www.openglinsights.

com/. CRC Press, 2012, pp. 323–335. ISBN: 978-1439893760.

[Mit07] Martin Mittring. “Finding Next Gen: CryEngine 2”. In: ACM SIGGRAPH

2007 Courses. SIGGRAPH ’07. San Diego, California: ACM, 2007, pp. 97–

121. ISBN: 978-1-4503-1823-5. DOI: 10.1145/1281500.1281671. URL:

http://doi.acm.org/10.1145/1281500.1281671.

[Mit12] Martin Mittring. “The Technology Behind the Unreal Engine 4 Elemental

demo”. In: 2012.

[MML12] Morgan McGuire, Michael Mara, and David Luebke. “Scalable Ambient

Obscurance”. In: High-Performance Graphics 2012. Paris, France, 2012. URL:

http://graphics.cs.williams.edu/papers/SAOHPG12/.

[MSW10] Oliver Mattausch, Daniel Scherzer, and Michael Wimmer. “High-Quality

Screen-Space Ambient Occlusion using Temporal Coherence”. In: Computer

Graphics Forum 29.8 (Dec. 2010), pp. 2492–2503. ISSN: 0167-7055. URL: http:

/ / www . cg . tuwien . ac . at / research / publications / 2010 /

mattausch-2010-tao/.

BIBLIOGRAPHY 101

[Ori15] Ayo Orimoloye. “Adreno Hardware Tutorial 3: Tile Based Rendering”. In:

(2015). URL: https://developer.qualcomm.com/software/adreno-

gpu-sdk/tutorial-videos.

[PF05] Matt Pharr and Randima Fernando. GPU Gems 2: Programming Techniques

for High-Performance Graphics and General-Purpose Computation (Gpu Gems).

Addison-Wesley Professional, 2005. ISBN: 0321335597.

[PH10] Matt Pharr and Greg Humphreys. Physically Based Rendering, Second Edi-

tion: From Theory To Implementation. 2nd. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc., 2010. ISBN: 0123750792, 9780123750792.

[PV05] Tuan Q. Pham and Lucas J. van Vliet. “Separable bilateral filtering for fast

video preprocessing.” In: ICME. IEEE Computer Society, 2005, pp. 454–

457. ISBN: 0-7803-9331-7. URL: http://dblp.uni- trier.de/db/

conf/icmcs/icme2005.html#PhamV05.

[QT15] Inc. Qualcomm Technologies. “Qualcomm Adreno OpenGL ES Developer

Guide”. In: (2015). URL: https://developer.apple.com/library/

ios/documentation/3DDrawing/Conceptual/OpenGLES_ProgrammingGuide/

Introduction/Introduction.html.

[Rit+08] Tobias Ritschel et al. “3D Unsharp Masking for Scene Coherent Enhance-

ment”. In: ACM Trans. Graph. (Proc. of SIGGRAPH 2008) 27.3 (2008).

[SA07] Perumaal Shanmugam and Okan Arikan. “Hardware Accelerated Ambi-

ent Occlusion Techniques on GPUs”. In: Proceedings of the 2007 Sympo-

sium on Interactive 3D Graphics and Games. I3D ’07. Seattle, Washington:

ACM, 2007, pp. 73–80. ISBN: 978-1-59593-628-8. DOI: 10.1145/1230100.

1230113. URL: http://doi.acm.org/10.1145/1230100.1230113.

[Som15] Rys Sommefeldt. “A Look at the PowerVR Graphics Architecture: Tile-

Based Rendering”. In: (2015). URL: http://blog.imgtec.com/powervr/

a - look - at - the - powervr - graphics - architecture - tile -

based-rendering.

[Suf07] Kevin Suffern. Ray Tracing from the Ground Up. Natick, MA, USA: A. K.

Peters, Ltd., 2007. ISBN: 1568812728.

[Tim13] Ville Timonen. “Line-Sweep Ambient Obscurance”. In: Computer Graphics

Forum (Proceedings of EGSR 2013) 32.4 (2013), pp. 97–105. URL: http://

wili.cc/research/lsao/.

[TL06] Oliver Deussen Thomas Luft Carsten Colditz. “Image Enhancement by

Unsharp Masking the Depth Buffer”. In: (2006).

[Syl07] Sylvain Paris, Pierre Kornprobst, Jack Tumblin, and Frédo Durand. “A

Gentle Introduction to Bilateral Filtering and its Applications”. In: (2007).

	Abstract
	Resum
	Resumen
	Acknowledgements
	Introduction
	Background
	Introduction to Ambient Occlusion
	The Rendering Equation
	From the Rendering Equation to Ambient Occlusion
	Direct Lighting
	Ambient Light
	Ambient Occlusion
	Ambient Obscurance
	Practical Considerations

	Real-Time Ambient Occlusion Methods
	Baked Ambient Occlusion
	Screen Space Ambient Occlusion
	Geometry-based Ambient Occlusion
	Volume-based Ambient Occlusion

	Mobile GPU Architecture: Tile-Based Deferred Rendering
	Immediate Mode Rendering
	Tile-Based Deferred Rendering
	Performance Guidelines

	Screen Space Ambient Occlusion
	Screen Space Ambient Occlusion
	Near-field and Far-field Ambient Occlusion
	Banding, Noise and Blur
	Popping
	Flickering
	Robustness
	Scalability

	Screen Space Ambient Occlusion Techniques
	Image Enhancement by Unsharp Masking the Depth Buffer
	Crytek Ambient Occlusion
	Image-Space Horizon-Based Ambient Occlusion
	Starcraft 2 Ambient Occlusion
	Screen Space Ambient Occlusion using Temporal Coherence
	Alchemy Ambient Obscurance
	Separable Approximation of Ambient Occlusion

	Blur Techniques
	Bilateral Filter
	Separable Blur

	Implementation on Mobile
	Characteristics and Limitations of Mobile GPUs
	Limited Memory Bandwidth
	Limited Compute Power
	High Screen Resolutions
	Tile-Based Deferred Rendering

	Rendering Pipeline
	ND-buffer Pipeline
	G-buffer Pipeline
	Pipeline Feature Matrix
	Our Pipeline

	Random Sampling
	Disc Sampling
	Hemisphere Sampling
	Under-sampling and Per-Pixel Randomisation
	Blur

	Crytek Ambient Occlusion
	Starcraft 2 Ambient Occlusion
	Alchemy Ambient Obscurance
	Horizon-Based Ambient Occlusion
	Unsharp Mask
	Home-Brewed Ambient Occlusion
	Progressive Ambient Occlusion

	Results
	Test Setup
	Forward and Deferred Pipelines
	Depth Precision
	View Space Position Reconstruction
	Saving View Space Position Instead of Depth
	Saving Normals as RG
	Bilateral Filter and Separable Blur
	Runtime Performance of Ambient Occlusion Methods
	Progressive Ambient Occlusion
	Qualitative Results and Comparison
	Crytek Ambient Occlusion
	Starcraft 2 Ambient Occlusion
	Alchemy Ambient Obscurance
	Horizon-Based Ambient Occlusion
	Home-Brewed Ambient Occlusion
	Unsharp Masking of the Depth Buffer

	Conclusions
	Future Work

	Ambient Occlusion Shaders
	Blur Filters
	Bibliography

