
Subtyping and Dynamic Dispatch
Or why apples are functions

Marc Sunet*

July 6, 2012

Introduction

Subtyping and dynamic dispatch… you don’t really need them. Or well, maybe you do, but
perhaps less oen than you think.

e purpose of this tutorial is to convince ourselves that we can dodge subtyping and dynamic
dispatch using closures. As a Haskell initiate and as someone who had their mind shaped in
the object-oriented style, designing solutions in an environment where we can’t simply roll a
class hierarchy made me feel naked most of the time. is tutorial addresses that particular
problem in the context of building a simple game. e information presented here is not new,
but the average Joe the C++ coder should still find it enlightening.

An Initial Game Object

Suppose we are building a game. It is quite natural to think about the objects making up a scene
as just that, game objects. Now, suppose that our game has apples and bananas. Of course, we
do not want to limit ourselves to just these two types of objects, as we might decide to add new
ones later on.

e natural thing to do in the object oriented paradigm would be to throw in a base class, say,
GameObject, from which other classes, say Apple and Banana, would derive. is would allow
us to decouple the rest of the game code from the specific types of games objects, giving us the
ability to add new ones at a later stage. e following code snippet illustrates this concept:

*My thanks go to Tilo Wiklund for the initial explanation of the concepts leading up to writing this document, as
well as for his help in proofreading, copy editing and typeseing it.

1



class GameObject {
public:

virtual void render () const = 0;
};

class Apple : public GameObject {
public:

void render () const { cout << ”apple” << endl; }
};

class Banana : public GameObject {
public:

void render () const { cout << ”banana” << endl; }
};

In Haskell, one might be tempted to use algebraic data types as shown below:

data GameObject = Apple | Banana

render Apple = putStrLn ”apple”
render Banana = putStrLn ”banana”

But this approach would not be too adequate, the reason being that the C++ version of the code
has the added benefit of giving one the ability to alter the behaviour of the GameObject class
by extending it with new types of objects without touching existing code. In other words, the
GameObject class satisfies what is known as the open/closed principle, which states that classes
should be open for extension, but closed for modification. Unfortunately, this principle does
not directly translate to ADTs; we can not add an Orange constructor without modifying the
existing code, including many of the functions that paern match on GameObjects.

No Data? That must be Functional!

Notice that GameObject, Apple and Banana have no data, only behaviour. What we just coded
in C++ is a bunch of function objects; that is to say simply functions disguised as objects. is
is in fact a common C++ idiom. It allows one to pass functions around and swap one for the
other as if they were first class citizens to get different behaviours at runtime.

Since our C++ code is actually functional in nature, we ought to be able to do a Haskell “equiva-
lent”. To do so, we think about the behaviour exposed by the GameObject class. A game object is
simply something that can render itself, so by capturing this very notionwe get to the following
Haskell alternative:

2



data GameObject = GameObject { render :: IO () }

apple = GameObject $ putStrLn ”apple”
banana = GameObject $ putStrLn ”banana”

How is this beer thanwhatwe had initially? Well, we can now add orangeswithoutmodifying
existing code:

orange = GameObject $ putStrLn ”orange”

eopen/closed principle is preserved in the newHaskell design. We just had to realise that the
C++ class hierarchy we devised was inherently functional to arrive at a beer Haskell solution.

Notice that in the Haskell version of the code apples and bananas are not proper types, but func-
tions that construct a GameObject value. is is a key point that will accompany us throughout
the rest of the tutorial.

Identifying Game Objects with Unique IDs

Suppose that we want to go further by identifying game objects with a unique ID and spit it
when rendering an object. e C++ code could resemble the following:

class GameObject {
int _id;

public:
GameObject (int id) : _id(id) {}

int id () const { return _id; }

virtual void render () const = 0;
};

class Apple : public GameObject {
public:

Apple (int id) : GameObject(id) {}

void render () const { cout << ”apple ” << id() << endl; }
};

class Banana : public GameObject {
public:

3



Banana (int id) : GameObject(id) {}

void render () const { cout << ”banana ” << id() << endl; }
};

But how do we translate that into Haskell?

Same Data, Different Behaviour

e ID is common to all game objects. Our old design adapts to the new situation without
any major changes; all we need to do is incorporate the new aribute into the GameObject data
type:

data GameObject = GameObject
{ goID :: Int
, render :: IO () }

apple goid = GameObject goid $ putStrLn ”apple”
banana goid = GameObject goid $ putStrLn ”banana”

Adding data common to all game objects is not a problem, we just need to slightly complicate
the GameObject data type so as to reflect the changes. Notice that since apple and banana are
functions that build GameObject values, we must supply them with the game object ID that
identifies the game object we are building.

Updating Game Objects

A static game is not all that fun, and eventually we will want to update game objects over the
course time. Let us suppose that our apples now have a level aribute, and that it is included in
the output when apples are rendered. Furthermore, suppose that they level up on every game
tick. Note that we wish our bananas remain static. Of course, having apples level up on every
tick might seem like a somewhat contrived example, but it illustrates the next problem at hand
without adding too much cluer to the code.

e C++ version of the game could now look something like the following:

class GameObject {
int _id;

public:
GameObject (int id) : _id(id) {}

4



int id () const { return _id; }

virtual void render () const = 0;

virtual void update () {} // Do nothing.
};

class Apple : public GameObject {
int level;

public:
Apple (int id) : GameObject(id), level(0) {}

void render () const { cout << ”apple, id: ” << id()
<< ”, level: ” << level
<< endl; }

void update () { level++; }
};

class Banana : public GameObject {
public:

Banana (int id) : GameObject(id) {}

void render () const { cout << ”banana ” << id() << endl; }

// Default update version inherited from GameObject.
};

How do we reflect the changes in Haskell? One might be tempted to do the following:

data GameObject = GameObject
{ level :: Int
, render :: IO ()
, ... }

Recall that bananas do not have levels. We can not push the level aribute all the way to
GameObject itself, as that would imply that all game objects have a level.

Ok then, what about the following:

data GameObject = Apple { level :: Int, ... } | Banana { ... }

is would once again remove the possibility of adding new kinds of GameObjects.

5



While a GameObject is still just something that can render, update, and uniquely identify itself,
an apple needs to carry around an additional level aribute.

Closures to the Rescue

Sometimes we just need to put the functional hat back on, and this is one of those times. If
you are doing object oriented programming most of the time, you might forget about the oen
underestimated power of functions.

e level aribute is used internally by our apples, so why not trap it in a closure? With the
data centric hat on, we could say that an Apple is a type of GameObject that has a level, that
it levels up every certain amount of time, and that as with all game objects, it can render and
uniquely identify itself.

Of course, if we are for themost part object oriented programmers we are going to be crunching
data every minute, so that definition might seem just fine. In Haskell, however, it is not.

We have to question ourselves what it is we wish to think of as an Apple. If we take the data
centric hat off and put the functional one on, we might come up with the following:

An Apple is a function that takes a game object ID and a level and returns a
GameObject identified by the given ID that renders the given level to the output
and whose update function returns a new GameObject that does exactly the same
thing but with the given level increased by 1.

What do we mean by this? We mean something like the following:

data GameObject = GameObject
{ goID :: Int
, render :: IO ()
, update :: GameObject }

banana :: Int → GameObject
banana goid =

GameObject
{ goID = goid
, render = printf ”banana %d\n” goid
, update = banana goid }

apple :: Int → Int → GameObject
apple level goid =

GameObject
{ goID = goid
, render = printf ”apple, id: %d, level %d\n” goid level
, update = apple (level+1) goid }

As we have been pointing out, apples are not game objects, but functions that assemble game

6



objects for us. e key here is that what defines an apple is a function applied to whatever
aributes we need to represent that apple. Technically speaking, we would say that an apple is
actually a closure, not the apple-building function on its own, but we can still think of an apple
as a way to assemble a game object.

In Haskell, functions are not just pieces of code that take some parameters and return a value.
Functions are first class citizens; you can pass them around and return them from other func-
tions, store them, replace them. ey allow one to encode ”regular” functions, data structures,
infinite lists, and more.

Above, we use functions to represent particular types of game objects. e only data type
we actually have is GameObject. Particular game objects, such as apples and bananas, are not
subtypes of a more general GameObject type, but values of that type.

Now, the terminology can get a bit confusing. When we say ”an apple is a function that assem-
bles a GameObject” and ”an apple is a GameObject”, we really mean the same thing. e point is
that apples are not subtypes of GameObject, but values of it. From now on we will apply both
perspectives interchangeably.

But something is still not quite right. Aren’t apples (and bananas) infinitely recursive? Recall:

apple :: Int → Int → GameObject
apple level goid =

GameObject
{ ...
, update = apple (level+1) goid }

e GameObject assembled by apple has an apple inside of it with its level increased by 1, and
that other apple has another apple inside with the original level + 2, which in turn has another
apple that contains another apple…

Indeed, we are building an infinite sequence of apples. Haskell is lazy, so the recursive apple

call is not evaluated until it is requested. We can build an infinite game object like above just
like we could encode the complete fibonacci sequence in an infinite list:

fib = 0 : 1 : zipWith (+) fib (tail fib)

Laziness gives us the power to deal with infinity.

Towards More Realistic Updates

Up untill nowwe have had apples level up on every game tick. is has the possibly undesirable
effect that apples will level up at different rates depending on available computation resources.

7



What we seek now is the ability to level up apples based on some time measurement.

Notice that the Haskell code is building a static sequence of game objects. In the case of ba-
nanas, this is a sequence of identical bananas, while in the case of apples, each new apple in
the sequence gains an additional level with respect to the previous one.

e update function is not reacting to any external input, such as time; it just spawns a static
sequence of game objects. What we would like is to generate a dynamic sequence of game
objects based on some external measurement of time.

Going back to C++ , we could let the update method take a time delta and let apples level up
every 5 seconds:

class GameObject {
int _id;

public:
GameObject (int id) : _id(id) {}

int id () const { return _id; }

virtual void render () const = 0;

virtual void update (float dt) {} // Do nothing.
};

class Apple : public GameObject {
int level;
float elapsed;

public:
Apple (int id) : GameObject(id), level(0), elapsed(0) {}

void render () const { cout << ”apple, id: ” << id()
<< ”, level: ” << level
<< endl; }

void update (float dt) {
elapsed += dt;
if (elapsed >= 5.0f) {

elapsed = elapsed - 5.0f;
level++;

}
}

};

class Banana : public GameObject {
public:

Banana (int id) : GameObject(id) {}

8



void render () const { cout << “banana “<< id() << endl; }

// Default update version inherited from GameObject.
}

Now, how should we go about encoding this behaviour in Haskell? We wish to make use of the
lesson we just learned. Apples and bananas are just GameObjects, or functions that assemble
GameObjects for us. So how can we adapt our earlier game object to fit these new requirements?

A game object is still something that can be rendered, updated, and uniquely identified. e
definition from last time suits us quite well, except that the update function now takes a time
delta, just as in the C++ version:

data GameObject = GameObject
{ goID :: Int
, render :: IO ()
, update :: Float → GameObject }

e definition of banana only varies slightly. Its update function ignores the given time delta
and returns the original object:

banana :: Int → GameObject
banana goid =

GameObject
{ goID = goid
, render = printf ”banana %d\n” goid
, update = const $ banana goid }

We now turn to apples. e previous lesson taught us that the level aribute could simply be
a function argument. We now do the same with the elapsed aribute and add that extra logic
to get the apples leveled up every 5 seconds:

apple :: Int → Float → Int → GameObject
apple level elapsed goid =

GameObject
{ goID = goid
, render = printf ”apple, id: %d, level %d\n” goid level
, update = \dt →

let elapsed’ = elapsed + dt
in if elapsed’ >= 5.0

then apple (level+1) (elapsed’ - 5.0) goid
else apple level elapsed’ goid }

9



Now an apple’s update function creates a dynamic sequence of apples by reacting to time. In
fact, it could react to any external event, such as user input or a network message.

Now take a look at that! e Haskell solution is just as extensible as the C++ version, but
without the need of subtyping and dynamic dispatch.

e full source code follows:

import Text.Printf

data GameObject = GameObject
{ goID :: Int
, render :: IO ()
, update :: Float → GameObject }

banana :: Int → GameObject
banana goid =

GameObject
{ goID = goid
, render = printf ”banana %d\n” goid
, update = const $ banana goid }

apple :: Int → Float → Int → GameObject
apple level elapsed goid =

GameObject
{ goID = goid
, render = printf ”apple, id: %d, level %d\n” goid level
, update = \dt →

let elapsed’ = elapsed + dt
in if elapsed’ >= 5.0

then apple (level+1) (elapsed’ - 5.0) goid
else apple level elapsed’ goid }

Reifying Apple

As a final touch, having an actual Apple data type will make our code clearer and will allow us
to write functions that operate on apples as apples, rather than apples as a kind of game object.
e Apple data type could look something like the following:

data Apple = Apple
{ level :: Int
, elapsed :: Float }

e point being that it captures all the data needed to represent an apple as something other
than a game object. Given this way to represent apples, we can make functions that act directly

10



on the Apple data type. A function responsible for the updating of apples could now be of the
form:

updateApple :: Apple → Float → Apple
updateApple (Apple goid level elapsed) dt =

let elapsed’ = elapsed + dt
in if elapsed’ >= 5.0

then Apple goid (level+1) (elapsed’ - 5.0)
else Apple goid level elapsed’

Finally, we can change the apple builder to act directly on an Apple and make use of the apple
updater we just defined:

apple :: Apple → Int → GameObject
apple a@(Apple level elapsed) goid =

GameObject
{ goID = goid
, render = printf ”apple, id: %d, level %d\n” goid level
, update = flip apple goid . updateApple a }

e apple builder now defines a kind of explicit upcast operation. Once again, the full source
code:

import Text.Printf

data GameObject = GameObject
{ goID :: Int
, render :: IO ()
, update :: Float → GameObject }

data Apple = Apple
{ level :: Int
, elapsed :: Float }

updateApple :: Apple → Float → Apple
updateApple (Apple level elapsed) dt =

let elapsed’ = elapsed + dt
in if elapsed’ >= 5.0

then Apple (level+1) (elapsed’ - 5.0)
else Apple level elapsed’

apple :: Apple → Int → GameObject
apple a@(Apple level elapsed) goid =

GameObject
{ goID = goid
, render = printf ”apple, id: %d, level %d\n” goid level
, update = flip apple goid . updateApple a }

11



banana :: Int → GameObject
banana goid =

GameObject
{ goID = goid
, render = printf ”banana %d\n” goid
, update = const $ banana goid }

The Lesson We Just Learned

Many times, we might feel tempted to think of new entities as subtypes of a more general type.
Using functions, we can encode these new entities as closures and provide a mechanism to
build values of that more general type.

When we are doing functional programming we have to stop thinking of functions as just a
means of computation. Functions in a functional language are much more than that. Of course,
doing so is especially hardwhenwe are constantly going back and forth from an object-oriented
language to a functional one, but puing that extra effort will pay us back. ink twice before
underestimating the power of such a tool, however primitive it may look. Functions will oen
go all the way.

12


