diff options
Diffstat (limited to 'mem/test/mem_test.c')
-rw-r--r-- | mem/test/mem_test.c | 232 |
1 files changed, 232 insertions, 0 deletions
diff --git a/mem/test/mem_test.c b/mem/test/mem_test.c new file mode 100644 index 0000000..6ab4c7c --- /dev/null +++ b/mem/test/mem_test.c | |||
@@ -0,0 +1,232 @@ | |||
1 | #include "mem.h" | ||
2 | |||
3 | #include "test.h" | ||
4 | |||
5 | #define NUM_BLOCKS 10 | ||
6 | |||
7 | DEF_MEM(test_mem, int, NUM_BLOCKS); | ||
8 | |||
9 | static int count(test_mem* mem) { | ||
10 | int count = 0; | ||
11 | mem_foreach(mem, n, { count++; }); | ||
12 | return count; | ||
13 | } | ||
14 | |||
15 | static int sum(test_mem* mem) { | ||
16 | int sum = 0; | ||
17 | mem_foreach(mem, n, { sum += *n; }); | ||
18 | return sum; | ||
19 | } | ||
20 | |||
21 | // Create a statically-backed allocator. | ||
22 | TEST_CASE(mem_create) { | ||
23 | test_mem mem; | ||
24 | mem_make(&mem); | ||
25 | } | ||
26 | |||
27 | // Create a dynamically-backed allocator. | ||
28 | TEST_CASE(mem_create_dyn) { | ||
29 | DEF_MEM_DYN(dyn_mem, int); | ||
30 | |||
31 | dyn_mem mem; | ||
32 | mem_make_dyn(&mem, NUM_BLOCKS, sizeof(int)); | ||
33 | } | ||
34 | |||
35 | // Allocate N chunks of 1 block each. | ||
36 | TEST_CASE(mem_fully_allocate) { | ||
37 | test_mem mem; | ||
38 | mem_make(&mem); | ||
39 | |||
40 | for (int i = 0; i < NUM_BLOCKS; ++i) { | ||
41 | const int* block = mem_alloc(&mem, 1); | ||
42 | TEST_TRUE(block != 0); | ||
43 | } | ||
44 | } | ||
45 | |||
46 | // Allocate N chunks of 1 block each, then free them. | ||
47 | TEST_CASE(mem_fill_then_free) { | ||
48 | test_mem mem; | ||
49 | mem_make(&mem); | ||
50 | |||
51 | int* blocks[NUM_BLOCKS] = {0}; | ||
52 | for (int i = 0; i < NUM_BLOCKS; i++) { | ||
53 | blocks[i] = mem_alloc(&mem, 1); | ||
54 | TEST_TRUE(blocks[i] != 0); | ||
55 | } | ||
56 | |||
57 | for (int i = 0; i < NUM_BLOCKS; i++) { | ||
58 | mem_free(&mem, &blocks[i]); | ||
59 | TEST_EQUAL(blocks[i], 0); // Pointer should be set to 0 on free. | ||
60 | } | ||
61 | |||
62 | TEST_EQUAL(count(&mem), 0); | ||
63 | } | ||
64 | |||
65 | // Attempt to allocate blocks past the maximum allocator size. | ||
66 | // The allocator should handle the failed allocations gracefully. | ||
67 | TEST_CASE(mem_allocate_beyond_max_size) { | ||
68 | test_mem mem; | ||
69 | mem_make(&mem); | ||
70 | |||
71 | // Fully allocate the mem. | ||
72 | for (int i = 0; i < NUM_BLOCKS; ++i) { | ||
73 | TEST_TRUE(mem_alloc(&mem, 1) != 0); | ||
74 | } | ||
75 | |||
76 | // Past the end. | ||
77 | for (int i = 0; i < NUM_BLOCKS; ++i) { | ||
78 | TEST_EQUAL(mem_alloc(&mem, 1), 0); | ||
79 | } | ||
80 | } | ||
81 | |||
82 | // Free blocks should always remain zeroed out. | ||
83 | // This tests the invariant right after creating the allocator. | ||
84 | TEST_CASE(mem_zero_free_blocks_after_creation) { | ||
85 | test_mem mem; | ||
86 | mem_make(&mem); | ||
87 | |||
88 | const int zero = 0; | ||
89 | for (int i = 0; i < NUM_BLOCKS; ++i) { | ||
90 | const int* block = (const int*)(mem.blocks) + i; | ||
91 | TEST_EQUAL(memcmp(block, &zero, sizeof(int)), 0); | ||
92 | } | ||
93 | } | ||
94 | |||
95 | // Free blocks should always remain zeroed out. | ||
96 | // This tests the invariant after freeing a block. | ||
97 | TEST_CASE(mem_zero_free_block_after_free) { | ||
98 | test_mem mem; | ||
99 | mem_make(&mem); | ||
100 | |||
101 | int* val = mem_alloc(&mem, 1); | ||
102 | TEST_TRUE(val != 0); | ||
103 | *val = 177; | ||
104 | |||
105 | int* old_val = val; | ||
106 | mem_free(&mem, &val); // val pointer is set to 0. | ||
107 | TEST_EQUAL(*old_val, 0); // Block is zeroed out after free. | ||
108 | } | ||
109 | |||
110 | // Traverse an empty allocator. | ||
111 | TEST_CASE(mem_traverse_empty) { | ||
112 | test_mem mem; | ||
113 | mem_make(&mem); | ||
114 | |||
115 | TEST_EQUAL(count(&mem), 0); | ||
116 | } | ||
117 | |||
118 | // Traverse a partially full allocator. | ||
119 | TEST_CASE(mem_traverse_partially_full) { | ||
120 | const int N = NUM_BLOCKS / 2; | ||
121 | |||
122 | test_mem mem; | ||
123 | mem_make(&mem); | ||
124 | |||
125 | for (int i = 0; i < N; ++i) { | ||
126 | int* val = mem_alloc(&mem, 1); | ||
127 | TEST_TRUE(val != 0); | ||
128 | *val = i + 1; | ||
129 | } | ||
130 | |||
131 | TEST_EQUAL(sum(&mem), (N) * (N + 1) / 2); | ||
132 | } | ||
133 | |||
134 | // Traverse a full allocator. | ||
135 | TEST_CASE(mem_traverse_full) { | ||
136 | test_mem mem; | ||
137 | mem_make(&mem); | ||
138 | |||
139 | for (int i = 0; i < NUM_BLOCKS; ++i) { | ||
140 | int* val = mem_alloc(&mem, 1); | ||
141 | TEST_TRUE(val != 0); | ||
142 | *val = i + 1; | ||
143 | } | ||
144 | |||
145 | TEST_EQUAL(sum(&mem), (NUM_BLOCKS) * (NUM_BLOCKS + 1) / 2); | ||
146 | } | ||
147 | |||
148 | // Get the ith (allocated) chunk. | ||
149 | TEST_CASE(mem_get_block) { | ||
150 | test_mem mem; | ||
151 | mem_make(&mem); | ||
152 | |||
153 | for (int i = 0; i < NUM_BLOCKS; ++i) { | ||
154 | int* block = mem_alloc(&mem, 1); | ||
155 | TEST_TRUE(block != 0); | ||
156 | *block = i; | ||
157 | TEST_EQUAL(mem_get_chunk_handle(&mem, block), (size_t)i); | ||
158 | } | ||
159 | |||
160 | for (int i = 0; i < NUM_BLOCKS; ++i) { | ||
161 | TEST_EQUAL(*mem_get_chunk(&mem, i), i); | ||
162 | } | ||
163 | } | ||
164 | |||
165 | // Test merging. | ||
166 | // 1. Allocate chunks of variable sizes. | ||
167 | // 2. Free them in a different order. | ||
168 | // 3. Then we should be able to allocate 1 chunk of N blocks. | ||
169 | TEST_CASE(mem_fragmentation) { | ||
170 | test_mem mem; | ||
171 | mem_make(&mem); | ||
172 | |||
173 | int* blocks[NUM_BLOCKS] = {0}; | ||
174 | int next_block = 0; | ||
175 | |||
176 | #define ALLOC(num_blocks) \ | ||
177 | blocks[next_block] = mem_alloc(&mem, num_blocks); \ | ||
178 | TEST_TRUE(blocks[next_block] != 0); \ | ||
179 | next_block++; | ||
180 | |||
181 | #define FREE(block_idx) mem_free(&mem, &blocks[block_idx]) | ||
182 | |||
183 | // 5 total allocations of variable chunk sizes. | ||
184 | ALLOC(2); // 2; idx = 0 | ||
185 | ALLOC(3); // 5; idx = 1 | ||
186 | ALLOC(1); // 6; idx = 2 | ||
187 | ALLOC(3); // 9; idx = 3 | ||
188 | ALLOC(1); // 10; idx = 4 | ||
189 | |||
190 | // Free the 5 allocations in a different order. | ||
191 | FREE(1); | ||
192 | FREE(3); | ||
193 | FREE(4); | ||
194 | FREE(2); | ||
195 | FREE(0); | ||
196 | |||
197 | // Should be able to allocate 1 chunk of N blocks. | ||
198 | const void* chunk = mem_alloc(&mem, NUM_BLOCKS); | ||
199 | TEST_TRUE(chunk != 0); | ||
200 | } | ||
201 | |||
202 | // Clear and re-use an allocator. | ||
203 | TEST_CASE(mem_clear_then_reuse) { | ||
204 | test_mem mem; | ||
205 | mem_make(&mem); | ||
206 | |||
207 | // Allocate chunks, contents not important. | ||
208 | for (int i = 0; i < NUM_BLOCKS; ++i) { | ||
209 | int* chunk = mem_alloc(&mem, 1); | ||
210 | TEST_TRUE(chunk != 0); | ||
211 | } | ||
212 | |||
213 | mem_clear(&mem); | ||
214 | |||
215 | // Allocate chunks and assign values 0..N. | ||
216 | for (int i = 0; i < NUM_BLOCKS; ++i) { | ||
217 | int* chunk = mem_alloc(&mem, 1); | ||
218 | TEST_TRUE(chunk != 0); | ||
219 | *chunk = i + 1; | ||
220 | } | ||
221 | |||
222 | TEST_EQUAL(sum(&mem), NUM_BLOCKS * (NUM_BLOCKS + 1) / 2); | ||
223 | } | ||
224 | |||
225 | // Stress test. | ||
226 | // | ||
227 | // 1. Allocate the mem, either fully or partially. If fully, attempt to | ||
228 | // allocate some items past the end. | ||
229 | // | ||
230 | // 2. Free all allocated items in some random order. | ||
231 | |||
232 | int main() { return 0; } | ||