aboutsummaryrefslogtreecommitdiff
path: root/mem/test/mem_test.c
blob: 2f242c3b8d60fdb90017dbe1dbdcb02b13585292 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#include "mem.h"

#include "test.h"

#define NUM_BLOCKS 10

DEF_MEM(test_mem, int, NUM_BLOCKS)

static int count(test_mem* mem) {
  int count = 0;
  mem_foreach(mem, n, { count++; });
  return count;
}

static int sum(test_mem* mem) {
  int sum = 0;
  mem_foreach(mem, n, { sum += *n; });
  return sum;
}

// Create a statically-backed allocator.
TEST_CASE(mem_create) {
  test_mem mem;
  mem_make(&mem);
}

// Create a dynamically-backed allocator.
TEST_CASE(mem_create_dyn) {
  DEF_MEM_DYN(dyn_mem, int);

  dyn_mem mem;
  mem_make_dyn(&mem, NUM_BLOCKS, sizeof(int));
}

// Allocate N chunks of 1 block each.
TEST_CASE(mem_fully_allocate) {
  test_mem mem;
  mem_make(&mem);

  for (int i = 0; i < NUM_BLOCKS; ++i) {
    const int* block = mem_alloc(&mem, 1);
    TEST_TRUE(block != 0);
  }
}

// Allocate N chunks of 1 block each, then free them.
TEST_CASE(mem_fill_then_free) {
  test_mem mem;
  mem_make(&mem);

  int* blocks[NUM_BLOCKS] = {0};
  for (int i = 0; i < NUM_BLOCKS; i++) {
    blocks[i] = mem_alloc(&mem, 1);
    TEST_TRUE(blocks[i] != 0);
  }

  for (int i = 0; i < NUM_BLOCKS; i++) {
    mem_free(&mem, &blocks[i]);
    TEST_EQUAL(blocks[i], 0); // Pointer should be set to 0 on free.
  }

  TEST_EQUAL(count(&mem), 0);
}

// Attempt to allocate blocks past the maximum allocator size.
// The allocator should handle the failed allocations gracefully.
TEST_CASE(mem_allocate_beyond_max_size) {
  test_mem mem;
  mem_make(&mem);

  // Fully allocate the mem.
  for (int i = 0; i < NUM_BLOCKS; ++i) {
    TEST_TRUE(mem_alloc(&mem, 1) != 0);
  }

  // Past the end.
  for (int i = 0; i < NUM_BLOCKS; ++i) {
    TEST_EQUAL(mem_alloc(&mem, 1), 0);
  }
}

// Free blocks should always remain zeroed out.
// This tests the invariant right after creating the allocator.
TEST_CASE(mem_zero_free_blocks_after_creation) {
  test_mem mem;
  mem_make(&mem);

  const int zero = 0;
  for (int i = 0; i < NUM_BLOCKS; ++i) {
    const int* block = (const int*)(mem.blocks) + i;
    TEST_EQUAL(memcmp(block, &zero, sizeof(int)), 0);
  }
}

// Free blocks should always remain zeroed out.
// This tests the invariant after freeing a block.
TEST_CASE(mem_zero_free_block_after_free) {
  test_mem mem;
  mem_make(&mem);

  int* val = mem_alloc(&mem, 1);
  TEST_TRUE(val != 0);
  *val = 177;

  int* old_val = val;
  mem_free(&mem, &val);    // val pointer is set to 0.
  TEST_EQUAL(*old_val, 0); // Block is zeroed out after free.
}

// Traverse an empty allocator.
TEST_CASE(mem_traverse_empty) {
  test_mem mem;
  mem_make(&mem);

  TEST_EQUAL(count(&mem), 0);
}

// Traverse a partially full allocator.
TEST_CASE(mem_traverse_partially_full) {
  const int N = NUM_BLOCKS / 2;

  test_mem mem;
  mem_make(&mem);

  for (int i = 0; i < N; ++i) {
    int* val = mem_alloc(&mem, 1);
    TEST_TRUE(val != 0);
    *val = i + 1;
  }

  TEST_EQUAL(sum(&mem), (N) * (N + 1) / 2);
}

// Traverse a full allocator.
TEST_CASE(mem_traverse_full) {
  test_mem mem;
  mem_make(&mem);

  for (int i = 0; i < NUM_BLOCKS; ++i) {
    int* val = mem_alloc(&mem, 1);
    TEST_TRUE(val != 0);
    *val = i + 1;
  }

  TEST_EQUAL(sum(&mem), (NUM_BLOCKS) * (NUM_BLOCKS + 1) / 2);
}

// Get the ith (allocated) chunk.
TEST_CASE(mem_get_block) {
  test_mem mem;
  mem_make(&mem);

  for (int i = 0; i < NUM_BLOCKS; ++i) {
    int* block = mem_alloc(&mem, 1);
    TEST_TRUE(block != 0);
    *block = i;
    TEST_EQUAL(mem_get_chunk_handle(&mem, block), (size_t)i);
  }

  for (int i = 0; i < NUM_BLOCKS; ++i) {
    TEST_EQUAL(*mem_get_chunk(&mem, i), i);
  }
}

// Test merging.
// 1. Allocate chunks of variable sizes.
// 2. Free them in a different order.
// 3. Then we should be able to allocate 1 chunk of N blocks.
TEST_CASE(mem_fragmentation) {
  test_mem mem;
  mem_make(&mem);

  int* blocks[NUM_BLOCKS] = {0};
  int  next_block         = 0;

#define ALLOC(num_blocks)                           \
  blocks[next_block] = mem_alloc(&mem, num_blocks); \
  TEST_TRUE(blocks[next_block] != 0);               \
  next_block++;

#define FREE(block_idx) mem_free(&mem, &blocks[block_idx])

  // 5 total allocations of variable chunk sizes.
  ALLOC(2); // 2;  idx = 0
  ALLOC(3); // 5;  idx = 1
  ALLOC(1); // 6;  idx = 2
  ALLOC(3); // 9;  idx = 3
  ALLOC(1); // 10; idx = 4

  // Free the 5 allocations in a different order.
  FREE(1);
  FREE(3);
  FREE(4);
  FREE(2);
  FREE(0);

  // Should be able to allocate 1 chunk of N blocks.
  const void* chunk = mem_alloc(&mem, NUM_BLOCKS);
  TEST_TRUE(chunk != 0);
}

// Clear and re-use an allocator.
TEST_CASE(mem_clear_then_reuse) {
  test_mem mem;
  mem_make(&mem);

  // Allocate chunks, contents not important.
  for (int i = 0; i < NUM_BLOCKS; ++i) {
    int* chunk = mem_alloc(&mem, 1);
    TEST_TRUE(chunk != 0);
  }

  mem_clear(&mem);

  // Allocate chunks and assign values 0..N.
  for (int i = 0; i < NUM_BLOCKS; ++i) {
    int* chunk = mem_alloc(&mem, 1);
    TEST_TRUE(chunk != 0);
    *chunk = i + 1;
  }

  TEST_EQUAL(sum(&mem), NUM_BLOCKS * (NUM_BLOCKS + 1) / 2);
}

// Stress test.
//
// 1. Allocate the mem, either fully or partially. If fully, attempt to
//    allocate some items past the end.
//
// 2. Free all allocated items in some random order.

int main() { return 0; }