diff options
-rw-r--r-- | src/lib/include/neuralnet/matrix.h | 13 | ||||
-rw-r--r-- | src/lib/src/matrix.c | 26 | ||||
-rw-r--r-- | src/lib/src/train.c | 28 |
3 files changed, 39 insertions, 28 deletions
diff --git a/src/lib/include/neuralnet/matrix.h b/src/lib/include/neuralnet/matrix.h index f80b985..4cb0d25 100644 --- a/src/lib/include/neuralnet/matrix.h +++ b/src/lib/include/neuralnet/matrix.h | |||
@@ -56,13 +56,20 @@ void nnMatrixInitConstant(nnMatrix*, R value); | |||
56 | /// Multiply two matrices. | 56 | /// Multiply two matrices. |
57 | void nnMatrixMul(const nnMatrix* left, const nnMatrix* right, nnMatrix* out); | 57 | void nnMatrixMul(const nnMatrix* left, const nnMatrix* right, nnMatrix* out); |
58 | 58 | ||
59 | /// Multiply two matrices, row variant. | 59 | /// Multiply two matrices, row-by-row variant. |
60 | /// | 60 | /// |
61 | /// This function multiples two matrices row-by-row instead of row-by-column. | 61 | /// This function multiples two matrices row-by-row instead of row-by-column, |
62 | /// nnMatrixMul(A, B, O) == nnMatrixMulRows(A, B^T, O). | 62 | /// which is equivalent to regular multiplication after transposing the right |
63 | /// hand matrix. | ||
64 | /// | ||
65 | /// nnMatrixMul(A, B, O) == nnMatrixMulRows(A, B^T, O). | ||
63 | void nnMatrixMulRows( | 66 | void nnMatrixMulRows( |
64 | const nnMatrix* left, const nnMatrix* right, nnMatrix* out); | 67 | const nnMatrix* left, const nnMatrix* right, nnMatrix* out); |
65 | 68 | ||
69 | /// Compute the outer product of two vectors. | ||
70 | void nnMatrixMulOuter( | ||
71 | const nnMatrix* left, const nnMatrix* right, nnMatrix* out); | ||
72 | |||
66 | /// Matrix multiply-add. | 73 | /// Matrix multiply-add. |
67 | /// | 74 | /// |
68 | /// out = left + (right * scale) | 75 | /// out = left + (right * scale) |
diff --git a/src/lib/src/matrix.c b/src/lib/src/matrix.c index d5c3fcc..29511eb 100644 --- a/src/lib/src/matrix.c +++ b/src/lib/src/matrix.c | |||
@@ -189,6 +189,32 @@ void nnMatrixMulRows( | |||
189 | } | 189 | } |
190 | } | 190 | } |
191 | 191 | ||
192 | void nnMatrixMulOuter( | ||
193 | const nnMatrix* left, const nnMatrix* right, nnMatrix* out) { | ||
194 | assert(left != 0); | ||
195 | assert(right != 0); | ||
196 | assert(out != 0); | ||
197 | assert(out != left); | ||
198 | assert(out != right); | ||
199 | assert((left->rows == 1) || (left->cols == 1)); // Vector. | ||
200 | assert((right->rows == 1) || (right->cols == 1)); // Vector. | ||
201 | const int N = left->rows * left->cols; | ||
202 | const int M = right->rows * right->cols; | ||
203 | assert((out->rows == N) && (out->cols == M)); | ||
204 | |||
205 | const R* left_value = left->values; | ||
206 | R* out_value = out->values; | ||
207 | |||
208 | for (int i = 0; i < N; ++i) { | ||
209 | const R* right_value = right->values; | ||
210 | |||
211 | for (int j = 0; j < M; ++j) { | ||
212 | *out_value++ = *left_value * *right_value++; | ||
213 | } | ||
214 | left_value++; | ||
215 | } | ||
216 | } | ||
217 | |||
192 | void nnMatrixMulAdd( | 218 | void nnMatrixMulAdd( |
193 | const nnMatrix* left, const nnMatrix* right, R scale, nnMatrix* out) { | 219 | const nnMatrix* left, const nnMatrix* right, R scale, nnMatrix* out) { |
194 | assert(left); | 220 | assert(left); |
diff --git a/src/lib/src/train.c b/src/lib/src/train.c index ccff553..fe9f598 100644 --- a/src/lib/src/train.c +++ b/src/lib/src/train.c | |||
@@ -153,14 +153,9 @@ void nnTrain( | |||
153 | nnGradientElements* gradient_elems = | 153 | nnGradientElements* gradient_elems = |
154 | calloc(net->num_layers, sizeof(nnGradientElements)); | 154 | calloc(net->num_layers, sizeof(nnGradientElements)); |
155 | 155 | ||
156 | // Allocate the output transpose vectors for weight delta calculation. | ||
157 | // This is one column vector per layer. | ||
158 | nnMatrix* outputs_T = calloc(net->num_layers, sizeof(nnMatrix)); | ||
159 | |||
160 | assert(errors != 0); | 156 | assert(errors != 0); |
161 | assert(weight_deltas != 0); | 157 | assert(weight_deltas != 0); |
162 | assert(gradient_elems); | 158 | assert(gradient_elems); |
163 | assert(outputs_T); | ||
164 | 159 | ||
165 | for (int l = 0; l < net->num_layers; ++l) { | 160 | for (int l = 0; l < net->num_layers; ++l) { |
166 | const int layer_input_size = nnLayerInputSize(net, l); | 161 | const int layer_input_size = nnLayerInputSize(net, l); |
@@ -169,7 +164,6 @@ void nnTrain( | |||
169 | 164 | ||
170 | errors[l] = nnMatrixMake(1, layer_output_size); | 165 | errors[l] = nnMatrixMake(1, layer_output_size); |
171 | weight_deltas[l] = nnMatrixMake(layer_input_size, layer_output_size); | 166 | weight_deltas[l] = nnMatrixMake(layer_input_size, layer_output_size); |
172 | outputs_T[l] = nnMatrixMake(layer_output_size, 1); | ||
173 | 167 | ||
174 | // Allocate the gradient elements and vectors for weight delta calculation. | 168 | // Allocate the gradient elements and vectors for weight delta calculation. |
175 | nnGradientElements* elems = &gradient_elems[l]; | 169 | nnGradientElements* elems = &gradient_elems[l]; |
@@ -199,9 +193,6 @@ void nnTrain( | |||
199 | // the outputs. | 193 | // the outputs. |
200 | const nnMatrix* const training_outputs = query->network_outputs; | 194 | const nnMatrix* const training_outputs = query->network_outputs; |
201 | 195 | ||
202 | // A vector to store the training input transposed. | ||
203 | nnMatrix training_inputs_T = nnMatrixMake(inputs->cols, 1); | ||
204 | |||
205 | // If debug mode is requested, we will show progress every Nth iteration. | 196 | // If debug mode is requested, we will show progress every Nth iteration. |
206 | const int progress_frame = | 197 | const int progress_frame = |
207 | (params->max_iterations < PROGRESS_THRESHOLD) | 198 | (params->max_iterations < PROGRESS_THRESHOLD) |
@@ -223,10 +214,6 @@ void nnTrain( | |||
223 | const nnMatrix training_targets = | 214 | const nnMatrix training_targets = |
224 | nnMatrixBorrowRows((nnMatrix*)targets, sample, 1); | 215 | nnMatrixBorrowRows((nnMatrix*)targets, sample, 1); |
225 | 216 | ||
226 | // Will need the input transposed for backpropagation. | ||
227 | // Assuming one training input per iteration for now. | ||
228 | nnMatrixTranspose(&training_inputs, &training_inputs_T); | ||
229 | |||
230 | // Forward pass. | 217 | // Forward pass. |
231 | nnQuery(net, query, &training_inputs); | 218 | nnQuery(net, query, &training_inputs); |
232 | 219 | ||
@@ -240,14 +227,11 @@ void nnTrain( | |||
240 | nnMatrixSub( | 227 | nnMatrixSub( |
241 | training_outputs, &training_targets, &errors[net->num_layers - 1]); | 228 | training_outputs, &training_targets, &errors[net->num_layers - 1]); |
242 | 229 | ||
243 | // Update outputs_T, which we need during weight updates. | ||
244 | for (int l = 0; l < net->num_layers; ++l) { | ||
245 | nnMatrixTranspose(&query->layer_outputs[l], &outputs_T[l]); | ||
246 | } | ||
247 | |||
248 | // Update weights and biases for each internal layer, back-propagating | 230 | // Update weights and biases for each internal layer, back-propagating |
249 | // errors along the way. | 231 | // errors along the way. |
250 | for (int l = net->num_layers - 1; l >= 0; --l) { | 232 | for (int l = net->num_layers - 1; l >= 0; --l) { |
233 | const nnMatrix* layer_input = | ||
234 | (l == 0) ? &training_inputs : &query->layer_outputs[l - 1]; | ||
251 | const nnMatrix* layer_output = &query->layer_outputs[l]; | 235 | const nnMatrix* layer_output = &query->layer_outputs[l]; |
252 | nnGradientElements* elems = &gradient_elems[l]; | 236 | nnGradientElements* elems = &gradient_elems[l]; |
253 | nnMatrix* gradient = &elems->gradient; | 237 | nnMatrix* gradient = &elems->gradient; |
@@ -310,10 +294,7 @@ void nnTrain( | |||
310 | nnMatrix* layer_biases = &linear->biases; | 294 | nnMatrix* layer_biases = &linear->biases; |
311 | 295 | ||
312 | // Outer product to compute the weight deltas. | 296 | // Outer product to compute the weight deltas. |
313 | // This layer's input is the previous layer's output. | 297 | nnMatrixMulOuter(layer_input, gradient, &weight_deltas[l]); |
314 | const nnMatrix* input_T = | ||
315 | (l == 0) ? &training_inputs_T : &outputs_T[l - 1]; | ||
316 | nnMatrixMul(input_T, gradient, &weight_deltas[l]); | ||
317 | 298 | ||
318 | // Update weights. | 299 | // Update weights. |
319 | nnMatrixScale(&weight_deltas[l], params->learning_rate); | 300 | nnMatrixScale(&weight_deltas[l], params->learning_rate); |
@@ -360,7 +341,6 @@ void nnTrain( | |||
360 | // Clean up. | 341 | // Clean up. |
361 | for (int l = 0; l < net->num_layers; ++l) { | 342 | for (int l = 0; l < net->num_layers; ++l) { |
362 | nnMatrixDel(&errors[l]); | 343 | nnMatrixDel(&errors[l]); |
363 | nnMatrixDel(&outputs_T[l]); | ||
364 | nnMatrixDel(&weight_deltas[l]); | 344 | nnMatrixDel(&weight_deltas[l]); |
365 | 345 | ||
366 | nnGradientElements* elems = &gradient_elems[l]; | 346 | nnGradientElements* elems = &gradient_elems[l]; |
@@ -378,9 +358,7 @@ void nnTrain( | |||
378 | break; | 358 | break; |
379 | } | 359 | } |
380 | } | 360 | } |
381 | nnMatrixDel(&training_inputs_T); | ||
382 | free(errors); | 361 | free(errors); |
383 | free(outputs_T); | ||
384 | free(weight_deltas); | 362 | free(weight_deltas); |
385 | free(gradient_elems); | 363 | free(gradient_elems); |
386 | } | 364 | } |