aboutsummaryrefslogtreecommitdiff
path: root/src/lib/include
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/include')
-rw-r--r--src/lib/include/neuralnet/matrix.h111
-rw-r--r--src/lib/include/neuralnet/neuralnet.h64
-rw-r--r--src/lib/include/neuralnet/train.h42
-rw-r--r--src/lib/include/neuralnet/types.h3
4 files changed, 220 insertions, 0 deletions
diff --git a/src/lib/include/neuralnet/matrix.h b/src/lib/include/neuralnet/matrix.h
new file mode 100644
index 0000000..9816b81
--- /dev/null
+++ b/src/lib/include/neuralnet/matrix.h
@@ -0,0 +1,111 @@
1#pragma once
2
3#include <neuralnet/types.h>
4
5#include <assert.h>
6
7/// NxM matrix.
8typedef struct nnMatrix {
9 int rows;
10 int cols;
11 R* values;
12} nnMatrix;
13
14/// Construct a matrix.
15nnMatrix nnMatrixMake(int rows, int cols);
16
17/// Delete a matrix and free its internal memory.
18void nnMatrixDel(nnMatrix*);
19
20/// Move a matrix.
21///
22/// |in| is an empty matrix after the move.
23/// |out| is a matrix like |in| before the move.
24void nnMatrixMove(nnMatrix* in, nnMatrix* out);
25
26/// Deep-copy a matrix.
27void nnMatrixCopy(const nnMatrix* in, nnMatrix* out);
28
29/// Write the matrix values into an array in a row-major fashion.
30void nnMatrixToArray(const nnMatrix* in, R* out);
31
32/// Write the given row of a matrix into an array.
33void nnMatrixRowToArray(const nnMatrix* in, int row, R* out);
34
35/// Copy a column from a source to a target matrix.
36void nnMatrixCopyCol(const nnMatrix* in, nnMatrix* out, int col_in, int col_out);
37
38/// Mutable borrow of a matrix.
39nnMatrix nnMatrixBorrow(nnMatrix* in);
40
41/// Mutable borrow of a subrange of rows of a matrix.
42nnMatrix nnMatrixBorrowRows(nnMatrix* in, int row_start, int num_rows);
43
44/// Initialize the matrix from an array of values.
45///
46/// The array must hold values in a row-major fashion.
47void nnMatrixInit(nnMatrix*, const R* values);
48
49/// Initialize all matrix values to a given constant.
50void nnMatrixInitConstant(nnMatrix*, R value);
51
52/// Multiply two matrices.
53void nnMatrixMul(const nnMatrix* left, const nnMatrix* right, nnMatrix* out);
54
55/// Matrix multiply-add.
56///
57/// out = left + (right * scale)
58void nnMatrixMulAdd(const nnMatrix* left, const nnMatrix* right, R scale, nnMatrix* out);
59
60/// Matrix multiply-subtract.
61///
62/// out = left - (right * scale)
63void nnMatrixMulSub(const nnMatrix* left, const nnMatrix* right, R scale, nnMatrix* out);
64
65/// Hadamard product of two matrices.
66void nnMatrixMulPairs(const nnMatrix* left, const nnMatrix* right, nnMatrix* out);
67
68/// Add two matrices.
69void nnMatrixAdd(const nnMatrix* left, const nnMatrix* right, nnMatrix* out);
70
71/// Subtract two matrices.
72void nnMatrixSub(const nnMatrix* left, const nnMatrix* right, nnMatrix* out);
73
74/// Adds a row vector to all rows of the matrix.
75void nnMatrixAddRow(const nnMatrix* matrix, const nnMatrix* row, nnMatrix* out);
76
77/// Scale a matrix.
78void nnMatrixScale(nnMatrix*, R scale);
79
80/// Transpose a matrix.
81/// |in| must be different than |out|.
82void nnMatrixTranspose(const nnMatrix* in, nnMatrix* out);
83
84/// Threshold the values of a matrix using a greater-than operator.
85///
86/// out[x,y] = 1 if in[x,y] > threshold else 0
87void nnMatrixGt(const nnMatrix* in, R threshold, nnMatrix* out);
88
89/// Return the matrix value at the given row and column.
90static inline R nnMatrixAt(const nnMatrix* matrix, int row, int col) {
91 assert(matrix);
92 return matrix->values[row * matrix->cols + col];
93}
94
95/// Set the matrix value at the given row and column.
96static inline void nnMatrixSet(nnMatrix* matrix, int row, int col, R value) {
97 assert(matrix);
98 matrix->values[row * matrix->cols + col] = value;
99}
100
101/// Return a pointer to the given row in the matrix.
102static inline const R* nnMatrixRow(const nnMatrix* matrix, int row) {
103 assert(matrix);
104 return &matrix->values[row * matrix->cols];
105}
106
107/// Return a mutable pointer to the given row in the matrix.
108static inline R* nnMatrixRow_mut(nnMatrix* matrix, int row) {
109 assert(matrix);
110 return &matrix->values[row * matrix->cols];
111}
diff --git a/src/lib/include/neuralnet/neuralnet.h b/src/lib/include/neuralnet/neuralnet.h
new file mode 100644
index 0000000..1cf1c53
--- /dev/null
+++ b/src/lib/include/neuralnet/neuralnet.h
@@ -0,0 +1,64 @@
1#pragma once
2
3#include <neuralnet/types.h>
4
5typedef struct nnMatrix nnMatrix;
6
7typedef struct nnNeuralNetwork nnNeuralNetwork;
8typedef struct nnQueryObject nnQueryObject;
9
10/// Neuron activation.
11typedef enum nnActivation {
12 nnIdentity,
13 nnSigmoid,
14 nnRelu,
15} nnActivation;
16
17/// Create a network.
18nnNeuralNetwork* nnMakeNet(int num_layers, const int* layer_sizes, const nnActivation* activations);
19
20/// Delete the network and free its internal memory.
21void nnDeleteNet(nnNeuralNetwork**);
22
23/// Set the network's weights.
24void nnSetWeights(nnNeuralNetwork*, const R* weights);
25
26/// Set the network's biases.
27void nnSetBiases(nnNeuralNetwork*, const R* biases);
28
29/// Query the network.
30///
31/// |input| is a matrix of inputs, one row per input and as many columns as the
32/// input's dimension.
33///
34/// The query object's output matrix (see nnQueryOutputs()) is a matrix of
35/// outputs, one row per output and as many columns as the output's dimension.
36void nnQuery(const nnNeuralNetwork*, nnQueryObject*, const nnMatrix* input);
37
38/// Query the network, array version.
39void nnQueryArray(const nnNeuralNetwork*, nnQueryObject*, const R* input, R* output);
40
41/// Create a query object.
42///
43/// The query object holds all the internal memory required to query a network.
44/// Query objects allocate all memory up front so that network queries can run
45/// without additional memory allocation.
46nnQueryObject* nnMakeQueryObject(const nnNeuralNetwork*, int num_inputs);
47
48/// Delete the query object and free its internal memory.
49void nnDeleteQueryObject(nnQueryObject**);
50
51/// Return the outputs of the query.
52const nnMatrix* nnNetOutputs(const nnQueryObject*);
53
54/// Return the network's input size.
55int nnNetInputSize(const nnNeuralNetwork*);
56
57/// Return the network's output size.
58int nnNetOutputSize(const nnNeuralNetwork*);
59
60/// Return the layer's input size.
61int nnLayerInputSize(const nnMatrix* weights);
62
63/// Return the layer's output size.
64int nnLayerOutputSize(const nnMatrix* weights);
diff --git a/src/lib/include/neuralnet/train.h b/src/lib/include/neuralnet/train.h
new file mode 100644
index 0000000..79f8e7b
--- /dev/null
+++ b/src/lib/include/neuralnet/train.h
@@ -0,0 +1,42 @@
1#pragma once
2
3#include <neuralnet/neuralnet.h>
4
5#include <stdbool.h>
6#include <stdint.h>
7
8typedef struct nnMatrix nnMatrix;
9
10/// Weight initialization strategy.
11///
12/// Note that regardless of strategy, a layer's weights are scaled by the
13/// layer's size. This is to avoid saturation when, e.g., using a sigmoid
14/// activation with many inputs. Thus, a (0,1) initialization is really
15/// (0,scale), for example.
16typedef enum nnWeightInitStrategy {
17 nnWeightInit01, // (0,1) range.
18 nnWeightInit11, // (-1,+1) range.
19 nnWeightInitNormal, // Normal distribution.
20} nnWeightInitStrategy;
21
22/// Network training parameters.
23typedef struct nnTrainingParams {
24 R learning_rate;
25 int max_iterations;
26 uint64_t seed;
27 nnWeightInitStrategy weight_init;
28 bool debug;
29} nnTrainingParams;
30
31/// Train the network.
32///
33/// |inputs| is a matrix of inputs, one row per input and as many columns as
34/// the input's dimension.
35///
36/// |targets| is a matrix of targets, one row per target and as many columns as
37/// the target's dimension.
38void nnTrain(
39 nnNeuralNetwork*,
40 const nnMatrix* inputs,
41 const nnMatrix* targets,
42 const nnTrainingParams*);
diff --git a/src/lib/include/neuralnet/types.h b/src/lib/include/neuralnet/types.h
new file mode 100644
index 0000000..e8d3942
--- /dev/null
+++ b/src/lib/include/neuralnet/types.h
@@ -0,0 +1,3 @@
1#pragma once
2
3typedef double R;