diff options
Diffstat (limited to 'src/lib/test/train_linear_perceptron_test.c')
| -rw-r--r-- | src/lib/test/train_linear_perceptron_test.c | 62 |
1 files changed, 62 insertions, 0 deletions
diff --git a/src/lib/test/train_linear_perceptron_test.c b/src/lib/test/train_linear_perceptron_test.c new file mode 100644 index 0000000..2b1336d --- /dev/null +++ b/src/lib/test/train_linear_perceptron_test.c | |||
| @@ -0,0 +1,62 @@ | |||
| 1 | #include <neuralnet/train.h> | ||
| 2 | |||
| 3 | #include <neuralnet/matrix.h> | ||
| 4 | #include <neuralnet/neuralnet.h> | ||
| 5 | #include "activation.h" | ||
| 6 | #include "neuralnet_impl.h" | ||
| 7 | |||
| 8 | #include "test.h" | ||
| 9 | #include "test_util.h" | ||
| 10 | |||
| 11 | #include <assert.h> | ||
| 12 | |||
| 13 | TEST_CASE(neuralnet_train_linear_perceptron_test) { | ||
| 14 | const int num_layers = 1; | ||
| 15 | const int layer_sizes[] = { 1, 1 }; | ||
| 16 | const nnActivation layer_activations[] = { nnIdentity }; | ||
| 17 | |||
| 18 | nnNeuralNetwork* net = nnMakeNet(num_layers, layer_sizes, layer_activations); | ||
| 19 | assert(net); | ||
| 20 | |||
| 21 | // Train. | ||
| 22 | |||
| 23 | // Try to learn the Y=X line. | ||
| 24 | #define N 2 | ||
| 25 | const R inputs[N] = { 0., 1. }; | ||
| 26 | const R targets[N] = { 0., 1. }; | ||
| 27 | |||
| 28 | nnMatrix inputs_matrix = nnMatrixMake(N, 1); | ||
| 29 | nnMatrix targets_matrix = nnMatrixMake(N, 1); | ||
| 30 | nnMatrixInit(&inputs_matrix, inputs); | ||
| 31 | nnMatrixInit(&targets_matrix, targets); | ||
| 32 | |||
| 33 | nnTrainingParams params = { | ||
| 34 | .learning_rate = 0.7, | ||
| 35 | .max_iterations = 10, | ||
| 36 | .seed = 0, | ||
| 37 | .weight_init = nnWeightInit01, | ||
| 38 | .debug = false, | ||
| 39 | }; | ||
| 40 | |||
| 41 | nnTrain(net, &inputs_matrix, &targets_matrix, ¶ms); | ||
| 42 | |||
| 43 | const R weight = nnMatrixAt(&net->weights[0], 0, 0); | ||
| 44 | const R expected_weight = 1.0; | ||
| 45 | printf("\nTrained network weight: %f, Expected: %f\n", weight, expected_weight); | ||
| 46 | TEST_TRUE(double_eq(weight, expected_weight, WEIGHT_EPS)); | ||
| 47 | |||
| 48 | // Test. | ||
| 49 | |||
| 50 | nnQueryObject* query = nnMakeQueryObject(net, /*num_inputs=*/1); | ||
| 51 | |||
| 52 | const R test_input[] = { 2.3 }; | ||
| 53 | R test_output[1]; | ||
| 54 | nnQueryArray(net, query, test_input, test_output); | ||
| 55 | |||
| 56 | const R expected_output = test_input[0]; | ||
| 57 | printf("Output: %f, Expected: %f\n", test_output[0], expected_output); | ||
| 58 | TEST_TRUE(double_eq(test_output[0], expected_output, OUTPUT_EPS)); | ||
| 59 | |||
| 60 | nnDeleteQueryObject(&query); | ||
| 61 | nnDeleteNet(&net); | ||
| 62 | } | ||
