diff options
Diffstat (limited to 'src/lib/test/train_xor_test.c')
-rw-r--r-- | src/lib/test/train_xor_test.c | 66 |
1 files changed, 66 insertions, 0 deletions
diff --git a/src/lib/test/train_xor_test.c b/src/lib/test/train_xor_test.c new file mode 100644 index 0000000..6ddc6e0 --- /dev/null +++ b/src/lib/test/train_xor_test.c | |||
@@ -0,0 +1,66 @@ | |||
1 | #include <neuralnet/train.h> | ||
2 | |||
3 | #include <neuralnet/matrix.h> | ||
4 | #include <neuralnet/neuralnet.h> | ||
5 | #include "activation.h" | ||
6 | #include "neuralnet_impl.h" | ||
7 | |||
8 | #include "test.h" | ||
9 | #include "test_util.h" | ||
10 | |||
11 | #include <assert.h> | ||
12 | |||
13 | TEST_CASE(neuralnet_train_xor_test) { | ||
14 | const int num_layers = 2; | ||
15 | const int layer_sizes[] = { 2, 2, 1 }; | ||
16 | const nnActivation layer_activations[] = { nnRelu, nnIdentity }; | ||
17 | |||
18 | nnNeuralNetwork* net = nnMakeNet(num_layers, layer_sizes, layer_activations); | ||
19 | assert(net); | ||
20 | |||
21 | // Train. | ||
22 | |||
23 | #define N 4 | ||
24 | const R inputs[N][2] = { { 0., 0. }, { 0., 1. }, { 1., 0. }, { 1., 1. } }; | ||
25 | const R targets[N] = { 0., 1., 1., 0. }; | ||
26 | |||
27 | nnMatrix inputs_matrix = nnMatrixMake(N, 2); | ||
28 | nnMatrix targets_matrix = nnMatrixMake(N, 1); | ||
29 | nnMatrixInit(&inputs_matrix, (const R*)inputs); | ||
30 | nnMatrixInit(&targets_matrix, targets); | ||
31 | |||
32 | nnTrainingParams params = { | ||
33 | .learning_rate = 0.1, | ||
34 | .max_iterations = 500, | ||
35 | .seed = 0, | ||
36 | .weight_init = nnWeightInit01, | ||
37 | .debug = false, | ||
38 | }; | ||
39 | |||
40 | nnTrain(net, &inputs_matrix, &targets_matrix, ¶ms); | ||
41 | |||
42 | // Test. | ||
43 | |||
44 | #define M 4 | ||
45 | |||
46 | nnQueryObject* query = nnMakeQueryObject(net, /*num_inputs=*/M); | ||
47 | |||
48 | const R test_inputs[M][2] = { { 0., 0. }, { 1., 0. }, { 0., 1. }, { 1., 1. } }; | ||
49 | nnMatrix test_inputs_matrix = nnMatrixMake(M, 2); | ||
50 | nnMatrixInit(&test_inputs_matrix, (const R*)test_inputs); | ||
51 | nnQuery(net, query, &test_inputs_matrix); | ||
52 | |||
53 | const R expected_outputs[M] = { 0., 1., 1., 0. }; | ||
54 | for (int i = 0; i < M; ++i) { | ||
55 | const R test_output = nnMatrixAt(nnNetOutputs(query), i, 0); | ||
56 | printf("\nInput: (%f, %f), Output: %f, Expected: %f\n", | ||
57 | test_inputs[i][0], test_inputs[i][1], test_output, expected_outputs[i]); | ||
58 | } | ||
59 | for (int i = 0; i < M; ++i) { | ||
60 | const R test_output = nnMatrixAt(nnNetOutputs(query), i, 0); | ||
61 | TEST_TRUE(double_eq(test_output, expected_outputs[i], OUTPUT_EPS)); | ||
62 | } | ||
63 | |||
64 | nnDeleteQueryObject(&query); | ||
65 | nnDeleteNet(&net); | ||
66 | } | ||