From 653e98e029a0d0f110b0ac599e50406060bb0f87 Mon Sep 17 00:00:00 2001 From: 3gg <3gg@shellblade.net> Date: Sat, 16 Dec 2023 10:21:16 -0800 Subject: Decouple activations from linear layer. --- src/lib/test/train_sigmoid_test.c | 46 +++++++++++++++++++++------------------ 1 file changed, 25 insertions(+), 21 deletions(-) (limited to 'src/lib/test/train_sigmoid_test.c') diff --git a/src/lib/test/train_sigmoid_test.c b/src/lib/test/train_sigmoid_test.c index 588e7ca..39a84b0 100644 --- a/src/lib/test/train_sigmoid_test.c +++ b/src/lib/test/train_sigmoid_test.c @@ -1,9 +1,9 @@ #include -#include -#include #include "activation.h" #include "neuralnet_impl.h" +#include +#include #include "test.h" #include "test_util.h" @@ -11,21 +11,24 @@ #include TEST_CASE(neuralnet_train_sigmoid_test) { - const int num_layers = 1; - const int layer_sizes[] = { 1, 1 }; - const nnActivation layer_activations[] = { nnSigmoid }; + const int num_layers = 2; + const int input_size = 1; + const nnLayer layers[] = { + {.type = nnLinear, .linear = {.input_size = 1, .output_size = 1}}, + {.type = nnSigmoid}, + }; - nnNeuralNetwork* net = nnMakeNet(num_layers, layer_sizes, layer_activations); + nnNeuralNetwork* net = nnMakeNet(layers, num_layers, input_size); assert(net); - // Train. +// Train. - // Try to learn the sigmoid function. - #define N 3 +// Try to learn the sigmoid function. +#define N 3 R inputs[N]; R targets[N]; for (int i = 0; i < N; ++i) { - inputs[i] = lerp(-1, +1, (R)i / (R)(N-1)); + inputs[i] = lerp(-1, +1, (R)i / (R)(N - 1)); targets[i] = sigmoid(inputs[i]); } @@ -35,29 +38,30 @@ TEST_CASE(neuralnet_train_sigmoid_test) { nnMatrixInit(&targets_matrix, targets); nnTrainingParams params = { - .learning_rate = 0.9, - .max_iterations = 100, - .seed = 0, - .weight_init = nnWeightInit01, - .debug = false, + .learning_rate = 0.9, + .max_iterations = 100, + .seed = 0, + .weight_init = nnWeightInit01, + .debug = false, }; nnTrain(net, &inputs_matrix, &targets_matrix, ¶ms); - const R weight = nnMatrixAt(&net->weights[0], 0, 0); + const R weight = nnMatrixAt(&net->layers[0].linear.weights, 0, 0); const R expected_weight = 1.0; - printf("\nTrained network weight: %f, Expected: %f\n", weight, expected_weight); + printf( + "\nTrained network weight: %f, Expected: %f\n", weight, expected_weight); TEST_TRUE(double_eq(weight, expected_weight, WEIGHT_EPS)); // Test. - nnQueryObject* query = nnMakeQueryObject(net, /*num_inputs=*/1); + nnQueryObject* query = nnMakeQueryObject(net, 1); - const R test_input[] = { 0.3 }; - R test_output[1]; + const R test_input[] = {0.3}; + R test_output[1]; nnQueryArray(net, query, test_input, test_output); - const R expected_output = 0.574442516811659; // sigmoid(0.3) + const R expected_output = 0.574442516811659; // sigmoid(0.3) printf("Output: %f, Expected: %f\n", test_output[0], expected_output); TEST_TRUE(double_eq(test_output[0], expected_output, OUTPUT_EPS)); -- cgit v1.2.3