
 

Introduction to Real-Time Physically 
Based Rendering

A light...
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Agenda

● Intro and a bit of history...
● Physics of light
● Shading model
● Material model, glTF, Implementation
● References
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History

Phong/Blinn-Phone → lack of expressiveness (“plastic look”), parameters not intuitive for artists.

Physically-based Shading → more expressive and realistic, parameters based on physical 
properties.

SIGGRAPH 2012   → “Practical Physically Based Shading in Film and Game Production”
SIGGRAPH 2013+ → “Physically Based Rendering in Theory and Practice” + “Real Shading in 
Unreal Engine 4”

● 2014, 2015, 2016, 2017, 2020, ...
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PBR Sample Models
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Context: The Reflectance Equation

Drawing: Chuck LePlant

Today’s topic

https://chuckleplant.github.io/2017/05/28/light-shafts.html


 

Physics of Light
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Light Through Media

Media → refractive index:

n̄=n+ik

Phase velocity Absorption

Mostly concerned with 
this part.
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Homogeneous Media

Homogeneous media
- does not change light direction
- may absorb light

Absorption at different wavelengths
→ change of colour.

Longer distance → greater absorption.
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Heterogeneous Media

Heterogeneous media presents 
variations in the refractive index

→ changes light direction & may 
also absorb

Abrupt changes in refractive index 
(over distances < light wavelength)

→ scattering

back-scattering

forward-scattering

randomization
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Planar Surfaces

N

θiθi

θt

Outside refractive index 
(e.g. air)

Material’s refractive index

Reflection

Refraction

Light splits in exactly 
two directions.

Angle reflection =
Angle incoming

Angle of refraction is 
generally different 
(Snell’s Law).

Fresnel tells us how 
much light is reflected 
vs refracted.

Path-tracing: probability
Shading: weight
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Reflection

N

θiθi

Dielectrics → reflection is NOT tinted 
(light has not penetrated the surface)

N

θiθi

Metals (conductors) → reflection is tinted 
(e.g., gold → yellow)
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Refraction

Dielectrics → refracted light is tinted, scatters 
back (diffuse) or forward (transmission)

Metals (conductors) → refracted light is 
absorbed (by free electrons)

N N
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Refraction

Dielectrics → refracted light is tinted, scatters 
back (diffuse) or forward (transmission)

N

Inside a dielectric, light interacts with 
molecules as we have seen previously:

● Forward/back scattering.
● Absorption, changing colour if different 

across wavelengths.
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General Surfaces
We model general 
surfaces as a set of 
microfacets, each 
optically flat.

Microfacet size < pixel, 
but large enough to 
alter appearance.

N
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General Surfaces

Source: Real-Time Rendering, 3rd edition

Rougher surface
→ more chaotic reflections
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General Surfaces
Use statistics to make computationally feasible:

N N

Planar € Microfacets €€€ Planar + statistics €€

N
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Statistical View
At the macroscopic level, we can think of every light ray reflecting/refracting into one of many possible 
directions (density function):

Ray tracing: sample & 
shoot

Shading: % contribution

N
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Subsurface Scattering
For dielectrics, refracted light bounces and forward/back-scatters through several exit points:

N
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Subsurface Scattering
Assume scatter area < pixel size:

Makes shading local to 
the point.

Materials like skin and 
cloth do exhibit 
subsurface scattering 
when viewed up close 
and need to be handled 
separately.

N
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Subsurface Scattering
Assume scatter area < pixel size:

Makes shading local to 
the point.

Materials like skin and 
cloth do exhibit 
subsurface scattering 
when viewed up close 
and need to be handled 
separately.

N
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No Transmission
Assume no transmission (handle separately):

N
(We will focus on a BRDF-
based model. Transmission 
is handled by a BTDF or 
BSDF.)
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Final Model
Back to the good life:

N
Reflection

Subsurface scattering

100% local

Distribution for reflection.

Distribution for scattering.



 

Shading Model (math)
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Shading Model

N

Fresnel

Subsurface reflectance 
(diffuse term)

Surface reflectance 
(specular term)

Refract Reflect

BRDF = Diffuse + Specular, each modulated (shading) or conditioned (path tracing) by Fresnel.
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Cook-Torrance BRDF

NSurface reflectance 
(specular)

Subsurface scattering 
(diffuse)

We will look at the widely-
used Cook-Torrance BRDF.

Many alternatives exist 
resulting from picking different 
diffuse and specular terms.

Quality-performance trade-off.

f r=kdF Lambert+k sFCook−Torrance
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f lambert=
c
π

Diffuse Term
Use a Lambertian BRDF. More complex alternatives often make only a very subtle quality difference.

Albedo (surface colour)
RGB in [0,1]

Normalization term 
(energy conservation)

N

Remember that here we are simulating light that penetrates 
the surface and bounces back (tinted; dielectrics only).
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Specular Term
Based on microfacet theory.

Surface is modeled as a set of 
microfacets.

Each microfacet is optically 
flat.

In shading, l,v are given; v is 
the reflected ray of interest.

Only microfacets with 
microgeometry normal m = h 
contribute to reflection.

m

N

lv

v vl l

h

m = h m = h

Reflection 
cone

Light vector l.
View vector v.
Half vector h.
Normal N.
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Specular Term
Based on microfacet theory.

Not all microfacets with 
microgeometry normal m = h 
contribute to reflection.

Light may be blocked from the 
direction of l (shadowing) or 
v (masking).

Inter-reflections not accounted 
for in microfacet theory.

v l
l

shadowing

masking
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Specular Term
Cook-Torrance specular term:

NDF: surface area of microfacets 
with microgeometry normal m = 
h.

G: % of microfacets with m = h 
that are neither shadowed nor 
masked.

F: Fresnel → % of reflected vs 
refracted light.

f (l , v)=
D(h)F (v , h)G(l , v ,h)

4(n⋅l)(n⋅v)

Normal distribution 
function (NDF)

Fresnel Geometry function

Normalization term
for Geometry function



  30

Normal Distribution Function
The NDF gives us a statistical distribution of surface point orientations.

In microfacet theory, the NDF gives us the relative surface area of microfacets with microgeometry 
normal m = h given h and surface roughness.

Trowbridge-Reitz GGX is a popular choice:

D (h)=NDFGGXTR=
α2

π((n⋅h)2(α2−1)+1)2

Surface roughness
Surface roughness

Source: learnopengl.com
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Geometry Function
The geometry function gives us the probability that microfacets with microgeometry normal m are 
visible from both l and v given surface roughness.

Smith’s method with a Schlick GGX is a popular choice:

GSchlickGGX (n , v , k )=
n⋅v

(n⋅v)(1−k )+k

G (n , v , l , k )=GSchlickGGX (n , v , k )GSchlickGGX (n ,l , k )

Surface roughness

Source: learnopengl.com

Masking Shadowing

kdirect=
(α+1)2

8
k IBL=

α2

2

Does not depend on h, but n. 
See references.
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Fresnel
Fresnel determines % of light that is reflected / refracted.

Implementations commonly use the Fresnel-Schlick approximation:

FSchlick (h , v , F0)=F0+(1−F0)(1−(h⋅v)5)

Equivalently, h · l, 
angle of incidence

Fresnel reflectance 
at normal incidence, 
or specular color,
RGB in [0,1]

Approximation based on 
specular color instead of 
index of refraction.
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Fresnel
F0 is deemed a sufficiently-good approximation of Fresnel reflectance at any angle and for a variety of 
materials. It is also referred to as the specular color of the surface.

Source: Real-Time Rendering, 3rd edition
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Fresnel
Fresnel reflectance changes mostly at angles beyond 75°, but these are a minority of the pixels:

Smooth metallic surface, angle n,v.
Source: PBS course.

Rough metallic surface, angle h,v. 
Fresnel combined with other BRDF 
terms, NDF and geometry function.
Source: PBS course.
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Image-Based Lighting (IBL)
Everything we have seen so far is for a given light direction.

N analytical lights → evaluate equations N times.

How should we handle environment lights?

→ In principle, sample and evaluate equations N times. (e.g., path tracing)
→ Too expensive for real-time rendering.

N times
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Image-Based Lighting (IBL)
Take the diffuse and specular components apart and handle separately:

Diffuse IBL Specular IBL
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Diffuse IBL
Diffuse BRDF is a constant; does not depend on light or view directions:

Comes out Irradiance map
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Diffuse IBL
Apply convolution to pre-compute irradiance map:

Input environment map (radiance) Output irradiance map

Source: learnopengl.com
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Specular IBL: Split-Sum Approx.
Specular BRDF depends on both light and view directions; cannot really pre-convolute:

But do it anyway. Apply Epic Games’ split-sum approximation:

BRDF integration mapPre-filtered environment map
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Specular IBL: Pre-filtered Env Map
The pre-filtered environment map is 
similar to the irradiance map, but 
takes roughness into account.

Each mip level encodes the sum of 
incoming light for cones of a given 
angle based on surface roughness.

Samples the NDF to generate light 
directions.

Assumes                             to make 
the computation feasible given that 
v is unknown beforehand.

Source: learnopengl.com

Higher mip → rougher surface → larger angle.
wo=w i≡v=l
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Specular IBL: Pre-filtered Env Map
The assumption                             
means we don’t get sharp specular 
reflections at grazing angles.

A relatively small price to pay for 
computational feasibility.

wo=w i≡v=l

Source: learnopengl.com, “Moving Frostbite to PBR”
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Specular IBL: BRDF Integration Map
BRDF integration map:

roughness

n⋅ωi≡n⋅l

BRDF response given surface 
roughness and input light direction 
(light-normal angle).

Red:      scale
Green:   bias

Scale & bias transform the Fresnel 
response. Full derivation in “Real 
Shading in Unreal Engine 4” 
(SIGGRAPH 2013).



 

Implementation
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Material Model
The metal-roughness workflow is almost a direct representation of the theory described so far:

Dielectrics: albedo
Metals: specular color (F0)

Binary in principle.
Values in [0,1] in practice to 
simulate mixtures.

Source: learnopengl.com
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Fresnel
For non-metals, a specular color (F0) of 0.04 is often used as an approximate average of F0 values 
across various materials (scalar value; specular not tinted for non-metals.)

non-metals

0.04 won’t work well for diamond, 
semiconductors, and other exotic 
materials. Hopefully your 
application doesn’t have too many 
of those.

Source: Real-Time Rendering, 3rd edition
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glTF
A standard asset format from Khronos.

First-class support for physically-
based rendering (PBR).

Widespread support across 
tools.

Sample models: 
https://github.com/KhronosGroup
/glTF-Sample-Models

Reference renderer: 
https://github.com/KhronosGroup
/glTF-Sample-Viewer

https://github.com/KhronosGroup/glTF-Sample-Models
https://github.com/KhronosGroup/glTF-Sample-Models
https://github.com/KhronosGroup/glTF-Sample-Viewer
https://github.com/KhronosGroup/glTF-Sample-Viewer
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Analytical Lights
For point and directional lights, we get a relatively straightforward implementation of everything we have 
seen so far:

Different term for IBL
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Analytical Lights
For point and directional lights, we get a relatively straightforward implementation of everything we have 
seen so far:

“albedo” is actually the 
specular color, or F0, 
for metals

Metallic surfaces do 
not have diffuse 
reflection.
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Image-Based Lighting (IBL)
For IBL, we use the different versions of Geometry and Fresnel functions:

Different term for IBL

Corrects for the fact 
that, in IBL, we do not 
have a single half 
vector. Empirically 
attenuates Fresnel for 
better results.
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Image-Based Lighting(IBL)
Cook-Torrance using IBL:
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Diffuse IBL
Irradiance map:
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Specular IBL
Pre-filtered environment map:

2D low-discrepancy 
sampling.

Sampling the NDF. 
Takes the 2D sample 
and maps it to the 
hemisphere, 
accounting for 
specular lobe size.

See learnopengl.com for 
implementation details.

https://learnopengl.com/PBR/IBL/Specular-IBL
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Specular IBL
BRDF integration map:

See learnopengl.com for 
implementation details.

Same sampling 
technique here.

See learnopengl.com 
for the full derivation.

https://learnopengl.com/PBR/IBL/Diffuse-irradiance
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