aboutsummaryrefslogtreecommitdiff
path: root/mem/src/mem.c
blob: 290403550866e6197deb2c28df660c27aa8a2844 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#include "mem.h"

#include <cassert.h>

#include <stdlib.h>
#include <string.h>

bool mem_make_(
    Memory* mem, Chunk* chunks, void* blocks, size_t num_blocks,
    size_t block_size_bytes) {
  assert(mem);
  assert((chunks && blocks) || (!chunks && !blocks));
  assert(num_blocks >= 1);

  mem->block_size_bytes = block_size_bytes;
  mem->num_blocks       = num_blocks;
  mem->next_free_chunk  = 0;
  mem->trap             = true;

  // Allocate chunks and blocks if necessary and zero them out.
  if (!chunks) {
    chunks       = calloc(num_blocks, sizeof(Chunk));
    blocks       = calloc(num_blocks, block_size_bytes);
    mem->dynamic = true;
    if (!chunks || !blocks) {
      return false;
    }
  } else {
    memset(blocks, 0, num_blocks * block_size_bytes);
    memset(chunks, 0, num_blocks * sizeof(Chunk));
    mem->dynamic = false;
  }
  mem->chunks = chunks;
  mem->blocks = blocks;

  // Initialize the head as one large free chunk.
  Chunk* head      = &mem->chunks[0];
  head->num_blocks = num_blocks;

  return true;
}

void mem_del_(Memory* mem) {
  assert(mem);
  if (mem->dynamic) {
    if (mem->chunks) {
      free(mem->chunks);
      mem->chunks = 0;
    }
    if (mem->blocks) {
      free(mem->blocks);
      mem->blocks = 0;
    }
  }
}

void mem_clear_(Memory* mem) {
  assert(mem);
  mem->next_free_chunk = 0;
  memset(mem->blocks, 0, mem->num_blocks * mem->block_size_bytes);
  memset(mem->chunks, 0, mem->num_blocks * sizeof(Chunk));

  // Initialize the head as one large free chunk.
  Chunk* head      = &mem->chunks[0];
  head->num_blocks = mem->num_blocks;
}

void* mem_alloc_(Memory* mem, size_t num_blocks) {
  assert(mem);
  assert(num_blocks >= 1);

  // Search for the first free chunk that can accommodate num_blocks.
  const size_t start     = mem->next_free_chunk;
  size_t       chunk_idx = start;
  bool         found     = false;
  do {
    Chunk* chunk = &mem->chunks[chunk_idx];
    if (!chunk->used) {
      if (chunk->num_blocks > num_blocks) {
        // Carve out a smaller chunk when the found chunk is larger than
        // requested.
        // [prev] <--> [chunk] <--> [new next] <--> [next]
        const size_t new_next_idx = chunk_idx + num_blocks;
        Chunk*       new_next     = &mem->chunks[new_next_idx];
        if (chunk->next) {
          mem->chunks[chunk->next].prev = new_next_idx;
        }
        new_next->prev = chunk_idx;
        new_next->next = chunk->next;
        chunk->next    = new_next_idx;

        new_next->num_blocks = chunk->num_blocks - num_blocks;
        chunk->num_blocks    = num_blocks;

        chunk->used = true;
        found       = true;
        break;
      } else if (chunk->num_blocks == num_blocks) {
        chunk->used = true;
        found       = true;
        break;
      }
    }
    chunk_idx = chunk->next; // Last chunk points back to 0, which is always the
                             // start of some chunk. 'next' and 'prev' are
                             // always valid pointers.
  } while (chunk_idx != start);

  if (found) {
    mem->next_free_chunk = mem->chunks[chunk_idx].next;
    return &mem->blocks[chunk_idx * mem->block_size_bytes];
  } else {
    if (mem->trap) {
      FAIL("Memory allocation failed, increase the allocator's capacity or "
           "avoid fragmentation.");
    }
    return 0; // Large-enough free chunk not found.
  }
}

// The given pointer is a pointer to this first block of the chunk.
void mem_free_(Memory* mem, void** chunk_ptr) {
  assert(mem);
  assert(chunk_ptr);

  const size_t chunk_idx =
      ((uint8_t*)*chunk_ptr - mem->blocks) / mem->block_size_bytes;
  assert(chunk_idx < mem->num_blocks);
  Chunk* chunk = &mem->chunks[chunk_idx];

  // Disallow double-frees.
  assert(chunk->used);

  // Zero out the chunk so that we don't get stray values the next time it is
  // allocated.
  memset(&mem->blocks[chunk_idx], 0, chunk->num_blocks * mem->block_size_bytes);

  // Free the chunk. If it is contiguous with other free chunks, then merge.
  // We only need to look at the chunk's immediate neighbours because no two
  // free chunks are left contiguous after merging.
  chunk->used = false;
  if (chunk->next) {
    Chunk* next = &mem->chunks[chunk->next];
    if (!next->used) {
      // Pre:  [chunk] <--> [next] <--> [next next]
      // Post: [  chunk + next   ] <--> [next next]
      chunk->num_blocks += mem->chunks[chunk->next].num_blocks;
      chunk->next = next->next;
      if (next->next) {
        Chunk* next_next = &mem->chunks[next->next];
        next_next->prev  = chunk_idx;
      }
      next->prev = next->next = next->num_blocks = 0;
    }
  }
  if (chunk->prev) {
    Chunk* prev = &mem->chunks[chunk->prev];
    if (!prev->used) {
      // Pre:  [prev] <--> [chunk] <--> [next]
      // Post: [  prev + chunk   ] <--> [next]
      prev->num_blocks += chunk->num_blocks;
      prev->next = chunk->next;
      if (chunk->next) {
        Chunk* next = &mem->chunks[chunk->next];
        next->prev  = chunk->prev;
      }
      chunk->prev = chunk->next = chunk->num_blocks = 0;
    }
  }

  *chunk_ptr = 0;
}

// The handle is the chunk's index. We don't call it an index in the public API
// because from the user's perspective, two chunks allocated back-to-back need
// not be +1 away (the offset depends on how large the first chunk is).
void* mem_get_chunk_(const Memory* mem, size_t chunk_handle) {
  assert(mem);
  assert(chunk_handle < mem->num_blocks);
  assert(mem->chunks[chunk_handle].used);
  return &mem->blocks[chunk_handle * mem->block_size_bytes];
}

// The given chunk pointer is a pointer to the blocks array.
size_t mem_get_chunk_handle_(const Memory* mem, const void* chunk) {
  assert(mem);
  const size_t block_byte_index = (const uint8_t*)chunk - mem->blocks;
  assert(block_byte_index % mem->block_size_bytes == 0);
  return block_byte_index / mem->block_size_bytes;
}

size_t mem_capacity_(const Memory* mem) {
  assert(mem);
  return mem->num_blocks * mem->block_size_bytes;
}

void mem_enable_traps_(Memory* mem, bool enable) {
  assert(mem);
  mem->trap = enable;
}