1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
|
#include "memstack.h"
#include "test.h"
#define NUM_INTS 10
#define CAPACITY (NUM_INTS * sizeof(int))
// Create and destroy a statically-backed stack.
TEST_CASE(memstack_create) {
int memory[CAPACITY];
memstack stack = {0};
memstack_make(&stack, CAPACITY, memory);
memstack_del(&stack);
}
// Create and destroy a dynamically-backed stack.
TEST_CASE(mem_create_dyn) {
memstack stack = {0};
memstack_make(&stack, CAPACITY, nullptr);
memstack_del(&stack);
}
// Allocate all N ints.
TEST_CASE(memstack_allocate_until_full) {
memstack stack = {0};
memstack_make(&stack, CAPACITY, nullptr);
for (int i = 0; i < NUM_INTS; ++i) {
const int* block = memstack_alloc(&stack, sizeof(int));
TEST_TRUE(block != nullptr);
}
TEST_TRUE(memstack_size(&stack) == CAPACITY);
memstack_del(&stack);
}
// Allocate all N ints, then free them.
TEST_CASE(memstack_fill_then_free) {
memstack stack = {0};
memstack_make(&stack, CAPACITY, nullptr);
int* blocks[NUM_INTS] = {nullptr};
for (int i = 0; i < NUM_INTS; ++i) {
blocks[i] = memstack_alloc(&stack, sizeof(int));
TEST_TRUE(blocks[i] != nullptr);
}
memstack_clear(&stack);
TEST_EQUAL(memstack_size(&stack), 0);
memstack_del(&stack);
}
// Attempt to allocate blocks past the maximum stack size.
// The stack should handle the failed allocations gracefully.
TEST_CASE(memstack_allocate_beyond_max_size) {
memstack stack = {0};
memstack_make(&stack, CAPACITY, nullptr);
memstack_enable_traps(&stack, false);
// Fully allocate the stack.
for (int i = 0; i < NUM_INTS; ++i) {
TEST_TRUE(memstack_alloc(&stack, sizeof(int)) != nullptr);
}
// Past the end.
for (int i = 0; i < NUM_INTS; ++i) {
TEST_EQUAL(memstack_alloc(&stack, sizeof(int)), nullptr);
}
TEST_TRUE(memstack_size(&stack) == CAPACITY);
memstack_del(&stack);
}
// Free blocks should always remain zeroed out.
// This tests the invariant right after creating the stack.
TEST_CASE(memstack_zero_free_blocks_after_creation) {
memstack stack = {0};
memstack_make(&stack, CAPACITY, nullptr);
for (int i = 0; i < NUM_INTS; ++i) {
const int* block = memstack_alloc(&stack, sizeof(int));
TEST_TRUE(block != nullptr);
TEST_EQUAL(*block, 0);
}
memstack_del(&stack);
}
// Free blocks should always remain zeroed out.
// This tests the invariant after clearing the stack and allocating a new block.
TEST_CASE(memstack_zero_free_block_after_free) {
memstack stack = {0};
memstack_make(&stack, CAPACITY, nullptr);
for (int i = 0; i < NUM_INTS; ++i) {
const int* block = memstack_alloc(&stack, sizeof(int));
TEST_TRUE(block != nullptr);
TEST_EQUAL(*block, 0);
}
memstack_clear(&stack);
for (int i = 0; i < NUM_INTS; ++i) {
const int* block = memstack_alloc(&stack, sizeof(int));
TEST_TRUE(block != nullptr);
TEST_EQUAL(*block, 0);
}
memstack_del(&stack);
}
// Aligned allocations should be properly aligned.
TEST_CASE(memstack_alloc_aligned) {
memstack stack = {0};
memstack_make(&stack, CAPACITY, nullptr);
// -1 because the base address of the memory storage might be unaligned.
for (int i = 0; i < NUM_INTS - 1; ++i) {
const int* block =
memstack_alloc_aligned(&stack, sizeof(int), alignof(int));
TEST_TRUE(block != nullptr);
TEST_EQUAL(*block, 0);
TEST_EQUAL((uintptr_t)block % alignof(int), 0);
}
memstack_del(&stack);
}
int main() { return 0; }
|