blob: bbdc52bedbd49864f0dee69486bda424056f73b0 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
|
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool isSymmetricVector(const std::vector<const TreeNode*>& nodes) {
if (nodes.empty()) return true;
if (nodes.size() == 1) return true;
for (size_t i = 0; i < nodes.size()/2; ++i) {
const size_t j = nodes.size() - i - 1;
if ((nodes[i] && !nodes[j]) ||
(!nodes[i] && nodes[j]) ||
(nodes[i] && nodes[j] && (nodes[i]->val != nodes[j]->val))) {
return false;
}
}
return true;
}
bool isSymmetricBfs(std::vector<const TreeNode*>& current_level,
std::vector<const TreeNode*>& next_level) {
if (current_level.empty()) {
return true;
}
if (!isSymmetricVector(current_level)) {
return false;
}
for (const TreeNode* node : current_level) {
if (node) {
next_level.push_back(node->left);
next_level.push_back(node->right);
}
}
current_level.clear(); // New next level.
return isSymmetricBfs(next_level, current_level);
}
bool isSymmetric(TreeNode* root) {
if (!root) return true;
std::vector<const TreeNode*> current_level({root});
std::vector<const TreeNode*> next_level;
return isSymmetricBfs(current_level, next_level);
}
};
|