diff options
author | Marc Sunet <msunet@shellblade.net> | 2021-12-30 02:20:49 -0800 |
---|---|---|
committer | Marc Sunet <msunet@shellblade.net> | 2021-12-30 02:20:49 -0800 |
commit | e905674daae8622d0f86a592b8b3008673a524f6 (patch) | |
tree | c868fddb96a82d0ba9da956b00061efc8e44a41e | |
parent | 2098eba3d01c7d6b46f0cddb25772f71288bcf6b (diff) |
Add 2D and 4D vector math.
-rw-r--r-- | include/math/vec2.h | 117 | ||||
-rw-r--r-- | include/math/vec3.h | 11 | ||||
-rw-r--r-- | include/math/vec4.h | 121 |
3 files changed, 239 insertions, 10 deletions
diff --git a/include/math/vec2.h b/include/math/vec2.h index 0a3f692..ebf0d78 100644 --- a/include/math/vec2.h +++ b/include/math/vec2.h | |||
@@ -2,9 +2,126 @@ | |||
2 | 2 | ||
3 | #include "defs.h" | 3 | #include "defs.h" |
4 | 4 | ||
5 | #include <assert.h> | ||
6 | #include <stdbool.h> | ||
7 | |||
8 | /// A 2D vector. | ||
5 | typedef struct vec2 { | 9 | typedef struct vec2 { |
6 | R x, y; | 10 | R x, y; |
7 | } vec2; | 11 | } vec2; |
8 | 12 | ||
9 | /// Construct a vector from 2 coordinates. | 13 | /// Construct a vector from 2 coordinates. |
10 | static inline vec2 vec2_make(R x, R y) { return (vec2){x, y}; } | 14 | static inline vec2 vec2_make(R x, R y) { return (vec2){x, y}; } |
15 | |||
16 | /// Construct a vector from an array. | ||
17 | static inline vec2 vec2_from_array(const R xy[2]) { | ||
18 | return (vec2){xy[0], xy[1] }; | ||
19 | } | ||
20 | |||
21 | /// Construct a vector from a single scalar value. | ||
22 | /// x = y = z = val. | ||
23 | static inline vec2 vec2_from_scalar(R val) { return (vec2){val, val}; } | ||
24 | |||
25 | /// Return the vector's ith coordinate. | ||
26 | static inline R vec2_ith(vec2 v, int i) { | ||
27 | assert(i >= 0 && i < 2); | ||
28 | return ((const R*)&v)[i]; | ||
29 | } | ||
30 | |||
31 | /// Negate the given vector. | ||
32 | static inline vec2 vec2_neg(vec2 v) { return (vec2){-v.x, -v.y}; } | ||
33 | |||
34 | /// Add two vectors. | ||
35 | static inline vec2 vec2_add(vec2 a, vec2 b) { | ||
36 | return (vec2){a.x + b.x, a.y + b.y}; | ||
37 | } | ||
38 | |||
39 | /// Subtract two vectors. | ||
40 | static inline vec2 vec2_sub(vec2 a, vec2 b) { | ||
41 | return (vec2){a.x - b.x, a.y - b.y}; | ||
42 | } | ||
43 | |||
44 | /// Modulate two vectors (component-wise multiplication). | ||
45 | static inline vec2 vec2_mul(vec2 a, vec2 b) { | ||
46 | return (vec2){a.x * b.x, a.y * b.y}; | ||
47 | } | ||
48 | |||
49 | /// Divide two vectors component-wise. | ||
50 | static inline vec2 vec2_div(vec2 a, vec2 b) { | ||
51 | return (vec2){a.x / b.x, a.y / b.y}; | ||
52 | } | ||
53 | |||
54 | /// Scale a vector by a scalar value. | ||
55 | static inline vec2 vec2_scale(vec2 v, R s) { | ||
56 | return (vec2){v.x * s, v.y * s}; | ||
57 | } | ||
58 | |||
59 | /// Compare two vectors for equality. | ||
60 | static inline bool vec2_eq(vec2 a, vec2 b) { | ||
61 | return a.x == b.x && a.y == b.y; | ||
62 | } | ||
63 | |||
64 | /// Return the absolute value of the vector. | ||
65 | static inline vec2 vec2_abs(vec2 v) { | ||
66 | return (vec2){rabs(v.x), rabs(v.y)}; | ||
67 | } | ||
68 | |||
69 | /// Compare two vectors for inequality. | ||
70 | static inline bool vec2_ne(vec2 a, vec2 b) { return !(vec2_eq(a, b)); } | ||
71 | |||
72 | /// Return the vector's squared magnitude. | ||
73 | static inline R vec2_norm2(vec2 v) { return v.x * v.x + v.y * v.y; } | ||
74 | |||
75 | /// Return the vector's magnitude. | ||
76 | static inline R vec2_norm(vec2 v) { return sqrt(vec2_norm2(v)); } | ||
77 | |||
78 | /// Return the squared distance between two points. | ||
79 | static inline R vec2_dist2(vec2 a, vec2 b) { | ||
80 | const vec2 v = vec2_sub(b, a); | ||
81 | return vec2_norm2(v); | ||
82 | } | ||
83 | |||
84 | /// Return the distance between two points. | ||
85 | static inline R vec2_dist(vec2 a, vec2 b) { return sqrt(vec2_dist2(a, b)); } | ||
86 | |||
87 | /// Return the given vector divided by its magnitude. | ||
88 | static inline vec2 vec2_normalize(vec2 v) { | ||
89 | const R n = vec2_norm(v); | ||
90 | assert(n > 0); | ||
91 | return (vec2){v.x / n, v.y / n}; | ||
92 | } | ||
93 | |||
94 | /// Return the dot product of two vectors. | ||
95 | static inline R vec2_dot(vec2 a, vec2 b) { | ||
96 | return a.x * b.x + a.y * b.y; | ||
97 | } | ||
98 | |||
99 | /// Reflect the vector about the normal. | ||
100 | static inline vec2 vec2_reflect(vec2 v, vec2 n) { | ||
101 | // r = v - 2 * dot(v, n) * n | ||
102 | return vec2_sub(v, vec2_scale(n, 2 * vec2_dot(v, n))); | ||
103 | } | ||
104 | |||
105 | /// Refract the vector about the normal. | ||
106 | static inline vec2 vec2_refract(vec2 v, vec2 n, R e) { | ||
107 | // k = 1 - e^2(1 - dot(n,v) * dot(n,v)) | ||
108 | const R k = 1.0 - e * e * (1.0 - vec2_dot(n, v) * vec2_dot(n, v)); | ||
109 | assert(k >= 0); | ||
110 | // r = e*v - (e * dot(n,v) + sqrt(k)) * n | ||
111 | return vec2_sub(vec2_scale(v, e), | ||
112 | vec2_scale(n, e * vec2_dot(n, v) * sqrt(k))); | ||
113 | } | ||
114 | |||
115 | /// Elevate the vector to a power. | ||
116 | static inline vec2 vec2_pow(vec2 v, R p) { | ||
117 | return (vec2){pow(v.x, p), pow(v.y, p)}; | ||
118 | } | ||
119 | |||
120 | /// The (1, 0) vector. | ||
121 | static inline vec2 right2() { return (vec2){1.0, 0.0}; } | ||
122 | |||
123 | /// The (0, 1) vector. | ||
124 | static inline vec2 up2() { return (const vec2){0.0, 1.0}; } | ||
125 | |||
126 | /// The (0, 0) vector. | ||
127 | static inline vec2 zero2() { return (const vec2){0.0, 0.0}; } | ||
diff --git a/include/math/vec3.h b/include/math/vec3.h index 3c3b053..caa212e 100644 --- a/include/math/vec3.h +++ b/include/math/vec3.h | |||
@@ -22,13 +22,6 @@ static inline vec3 vec3_from_array(const R xyz[3]) { | |||
22 | /// x = y = z = val. | 22 | /// x = y = z = val. |
23 | static inline vec3 vec3_from_scalar(R val) { return (vec3){val, val, val}; } | 23 | static inline vec3 vec3_from_scalar(R val) { return (vec3){val, val, val}; } |
24 | 24 | ||
25 | /// Normalize the vector. | ||
26 | static inline vec3 vec3_normalize(vec3 v) { | ||
27 | R n = sqrt(v.x * v.x + v.y * v.y + v.z * v.z); | ||
28 | assert(n > 0); | ||
29 | return (vec3){v.x / n, v.y / n, v.z / n}; | ||
30 | } | ||
31 | |||
32 | /// Return the vector's ith coordinate. | 25 | /// Return the vector's ith coordinate. |
33 | static inline R vec3_ith(vec3 v, int i) { | 26 | static inline R vec3_ith(vec3 v, int i) { |
34 | assert(i >= 0 && i < 3); | 27 | assert(i >= 0 && i < 3); |
@@ -92,7 +85,7 @@ static inline R vec3_dist2(vec3 a, vec3 b) { | |||
92 | static inline R vec3_dist(vec3 a, vec3 b) { return sqrt(vec3_dist2(a, b)); } | 85 | static inline R vec3_dist(vec3 a, vec3 b) { return sqrt(vec3_dist2(a, b)); } |
93 | 86 | ||
94 | /// Return the given vector divided by its magnitude. | 87 | /// Return the given vector divided by its magnitude. |
95 | static inline vec3 normalize(vec3 v) { | 88 | static inline vec3 vec3_normalize(vec3 v) { |
96 | const R n = vec3_norm(v); | 89 | const R n = vec3_norm(v); |
97 | assert(n > 0); | 90 | assert(n > 0); |
98 | return (vec3){v.x / n, v.y / n, v.z / n}; | 91 | return (vec3){v.x / n, v.y / n, v.z / n}; |
@@ -116,7 +109,7 @@ static inline vec3 vec3_reflect(vec3 v, vec3 n) { | |||
116 | } | 109 | } |
117 | 110 | ||
118 | /// Refract the vector about the normal. | 111 | /// Refract the vector about the normal. |
119 | static inline vec3 refract(vec3 v, vec3 n, R e) { | 112 | static inline vec3 vec3_refract(vec3 v, vec3 n, R e) { |
120 | // k = 1 - e^2(1 - dot(n,v) * dot(n,v)) | 113 | // k = 1 - e^2(1 - dot(n,v) * dot(n,v)) |
121 | const R k = 1.0 - e * e * (1.0 - vec3_dot(n, v) * vec3_dot(n, v)); | 114 | const R k = 1.0 - e * e * (1.0 - vec3_dot(n, v) * vec3_dot(n, v)); |
122 | assert(k >= 0); | 115 | assert(k >= 0); |
diff --git a/include/math/vec4.h b/include/math/vec4.h index 4ab843b..60da464 100644 --- a/include/math/vec4.h +++ b/include/math/vec4.h | |||
@@ -2,8 +2,12 @@ | |||
2 | 2 | ||
3 | #include "defs.h" | 3 | #include "defs.h" |
4 | 4 | ||
5 | #include <assert.h> | ||
6 | #include <stdbool.h> | ||
7 | |||
8 | /// A 4D vector. | ||
5 | typedef struct vec4 { | 9 | typedef struct vec4 { |
6 | R x, y, w, z; | 10 | R x, y, z, w; |
7 | } vec4; | 11 | } vec4; |
8 | 12 | ||
9 | /// Construct a vector from 4 coordinates. | 13 | /// Construct a vector from 4 coordinates. |
@@ -13,3 +17,118 @@ static inline vec4 vec4_make(R x, R y, R z, R w) { return (vec4){x, y, z, w}; } | |||
13 | static inline vec4 vec4_from_array(const R xyzw[4]) { | 17 | static inline vec4 vec4_from_array(const R xyzw[4]) { |
14 | return (vec4){xyzw[0], xyzw[1], xyzw[2], xyzw[3]}; | 18 | return (vec4){xyzw[0], xyzw[1], xyzw[2], xyzw[3]}; |
15 | } | 19 | } |
20 | |||
21 | /// Construct a vector from a single scalar value. | ||
22 | /// x = y = z = val. | ||
23 | static inline vec4 vec4_from_scalar(R val) { | ||
24 | return (vec4){val, val, val, val}; | ||
25 | } | ||
26 | |||
27 | /// Return the vector's ith coordinate. | ||
28 | static inline R vec4_ith(vec4 v, int i) { | ||
29 | assert(i >= 0 && i < 4); | ||
30 | return ((const R*)&v)[i]; | ||
31 | } | ||
32 | |||
33 | /// Negate the given vector. | ||
34 | static inline vec4 vec4_neg(vec4 v) { return (vec4){-v.x, -v.y, -v.z, -v.w}; } | ||
35 | |||
36 | /// Add two vectors. | ||
37 | static inline vec4 vec4_add(vec4 a, vec4 b) { | ||
38 | return (vec4){a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w}; | ||
39 | } | ||
40 | |||
41 | /// Subtract two vectors. | ||
42 | static inline vec4 vec4_sub(vec4 a, vec4 b) { | ||
43 | return (vec4){a.x - b.x, a.y - b.y, a.z - b.z, a.w - b.w}; | ||
44 | } | ||
45 | |||
46 | /// Modulate two vectors (component-wise multiplication). | ||
47 | static inline vec4 vec4_mul(vec4 a, vec4 b) { | ||
48 | return (vec4){a.x * b.x, a.y * b.y, a.z * b.z, a.w * b.w}; | ||
49 | } | ||
50 | |||
51 | /// Divide two vectors component-wise. | ||
52 | static inline vec4 vec4_div(vec4 a, vec4 b) { | ||
53 | return (vec4){a.x / b.x, a.y / b.y, a.z / b.z, a.w / b.w}; | ||
54 | } | ||
55 | |||
56 | /// Scale a vector by a scalar value. | ||
57 | static inline vec4 vec4_scale(vec4 v, R s) { | ||
58 | return (vec4){v.x * s, v.y * s, v.z * s, v.w * s}; | ||
59 | } | ||
60 | |||
61 | /// Compare two vectors for equality. | ||
62 | static inline bool vec4_eq(vec4 a, vec4 b) { | ||
63 | return a.x == b.x && a.y == b.y && a.z == b.z && a.w == b.w; | ||
64 | } | ||
65 | |||
66 | /// Return the absolute value of the vector. | ||
67 | static inline vec4 vec4_abs(vec4 v) { | ||
68 | return (vec4){rabs(v.x), rabs(v.y), rabs(v.z), rabs(v.w)}; | ||
69 | } | ||
70 | |||
71 | /// Compare two vectors for inequality. | ||
72 | static inline bool vec4_ne(vec4 a, vec4 b) { return !(vec4_eq(a, b)); } | ||
73 | |||
74 | /// Return the vector's squared magnitude. | ||
75 | static inline R vec4_norm2(vec4 v) { | ||
76 | return v.x * v.x + v.y * v.y + v.z * v.z + v.w * v.w; | ||
77 | } | ||
78 | |||
79 | /// Return the vector's magnitude. | ||
80 | static inline R vec4_norm(vec4 v) { return sqrt(vec4_norm2(v)); } | ||
81 | |||
82 | /// Return the squared distance between two points. | ||
83 | static inline R vec4_dist2(vec4 a, vec4 b) { | ||
84 | const vec4 v = vec4_sub(b, a); | ||
85 | return vec4_norm2(v); | ||
86 | } | ||
87 | |||
88 | /// Return the distance between two points. | ||
89 | static inline R vec4_dist(vec4 a, vec4 b) { return sqrt(vec4_dist2(a, b)); } | ||
90 | |||
91 | /// Return the given vector divided by its magnitude. | ||
92 | static inline vec4 vec4_normalize(vec4 v) { | ||
93 | const R n = vec4_norm(v); | ||
94 | assert(n > 0); | ||
95 | return (vec4){v.x / n, v.y / n, v.z / n, v.w / n}; | ||
96 | } | ||
97 | |||
98 | /// Return the dot product of two vectors. | ||
99 | static inline R vec4_dot(vec4 a, vec4 b) { | ||
100 | return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w; | ||
101 | } | ||
102 | |||
103 | /// Reflect the vector about the normal. | ||
104 | static inline vec4 vec4_reflect(vec4 v, vec4 n) { | ||
105 | // r = v - 2 * dot(v, n) * n | ||
106 | return vec4_sub(v, vec4_scale(n, 2 * vec4_dot(v, n))); | ||
107 | } | ||
108 | |||
109 | /// Refract the vector about the normal. | ||
110 | static inline vec4 vec4_refract(vec4 v, vec4 n, R e) { | ||
111 | // k = 1 - e^2(1 - dot(n,v) * dot(n,v)) | ||
112 | const R k = 1.0 - e * e * (1.0 - vec4_dot(n, v) * vec4_dot(n, v)); | ||
113 | assert(k >= 0); | ||
114 | // r = e*v - (e * dot(n,v) + sqrt(k)) * n | ||
115 | return vec4_sub(vec4_scale(v, e), | ||
116 | vec4_scale(n, e * vec4_dot(n, v) * sqrt(k))); | ||
117 | } | ||
118 | |||
119 | /// Elevate the vector to a power. | ||
120 | static inline vec4 vec4_pow(vec4 v, R p) { | ||
121 | return (vec4){pow(v.x, p), pow(v.y, p), pow(v.z, p), pow(v.w, p)}; | ||
122 | } | ||
123 | |||
124 | /// The (1, 0, 0, 0) vector. | ||
125 | static inline vec4 right4() { return (vec4){1.0, 0.0, 0.0, 0.0}; } | ||
126 | |||
127 | /// The (0, 1, 0, 0) vector. | ||
128 | static inline vec4 up4() { return (const vec4){0.0, 1.0, 0.0, 0.0}; } | ||
129 | |||
130 | /// The (0, 0, -1, 0) vector. | ||
131 | static inline vec4 forward4() { return (const vec4){0.0, 0.0, -1.0, 0.0}; } | ||
132 | |||
133 | /// The (0, 0, 0, 0) vector. | ||
134 | static inline vec4 zero4() { return (const vec4){0.0, 0.0, 0.0, 0.0}; } | ||