diff options
| author | jeanne <jeanne@localhost.localdomain> | 2022-05-11 09:54:38 -0700 |
|---|---|---|
| committer | jeanne <jeanne@localhost.localdomain> | 2022-05-11 09:54:38 -0700 |
| commit | 411f66a2540fa17c736116d865e0ceb0cfe5623b (patch) | |
| tree | fa92c69ec627642c8452f928798ff6eccd24ddd6 /src/lib/test/matrix_test.c | |
| parent | 7705b07456dfd4b89c272613e98eda36cc787254 (diff) | |
Initial commit.
Diffstat (limited to 'src/lib/test/matrix_test.c')
| -rw-r--r-- | src/lib/test/matrix_test.c | 350 |
1 files changed, 350 insertions, 0 deletions
diff --git a/src/lib/test/matrix_test.c b/src/lib/test/matrix_test.c new file mode 100644 index 0000000..8191c97 --- /dev/null +++ b/src/lib/test/matrix_test.c | |||
| @@ -0,0 +1,350 @@ | |||
| 1 | #include <neuralnet/matrix.h> | ||
| 2 | |||
| 3 | #include "test.h" | ||
| 4 | #include "test_util.h" | ||
| 5 | |||
| 6 | #include <assert.h> | ||
| 7 | #include <stdlib.h> | ||
| 8 | |||
| 9 | // static void PrintMatrix(const nnMatrix* matrix) { | ||
| 10 | // assert(matrix); | ||
| 11 | |||
| 12 | // for (int i = 0; i < matrix->rows; ++i) { | ||
| 13 | // for (int j = 0; j < matrix->cols; ++j) { | ||
| 14 | // printf("%f ", nnMatrixAt(matrix, i, j)); | ||
| 15 | // } | ||
| 16 | // printf("\n"); | ||
| 17 | // } | ||
| 18 | // } | ||
| 19 | |||
| 20 | TEST_CASE(nnMatrixMake_1x1) { | ||
| 21 | nnMatrix A = nnMatrixMake(1, 1); | ||
| 22 | TEST_EQUAL(A.rows, 1); | ||
| 23 | TEST_EQUAL(A.cols, 1); | ||
| 24 | } | ||
| 25 | |||
| 26 | TEST_CASE(nnMatrixMake_3x1) { | ||
| 27 | nnMatrix A = nnMatrixMake(3, 1); | ||
| 28 | TEST_EQUAL(A.rows, 3); | ||
| 29 | TEST_EQUAL(A.cols, 1); | ||
| 30 | } | ||
| 31 | |||
| 32 | TEST_CASE(nnMatrixInit_3x1) { | ||
| 33 | nnMatrix A = nnMatrixMake(3, 1); | ||
| 34 | nnMatrixInit(&A, (R[]) { 1, 2, 3 }); | ||
| 35 | TEST_EQUAL(A.values[0], 1); | ||
| 36 | TEST_EQUAL(A.values[1], 2); | ||
| 37 | TEST_EQUAL(A.values[2], 3); | ||
| 38 | } | ||
| 39 | |||
| 40 | TEST_CASE(nnMatrixCopyCol_test) { | ||
| 41 | nnMatrix A = nnMatrixMake(3, 2); | ||
| 42 | nnMatrix B = nnMatrixMake(3, 1); | ||
| 43 | |||
| 44 | nnMatrixInit(&A, (R[]) { | ||
| 45 | 1, 2, | ||
| 46 | 3, 4, | ||
| 47 | 5, 6, | ||
| 48 | }); | ||
| 49 | |||
| 50 | nnMatrixCopyCol(&A, &B, 1, 0); | ||
| 51 | |||
| 52 | TEST_EQUAL(nnMatrixAt(&B, 0, 0), 2); | ||
| 53 | TEST_EQUAL(nnMatrixAt(&B, 1, 0), 4); | ||
| 54 | TEST_EQUAL(nnMatrixAt(&B, 2, 0), 6); | ||
| 55 | |||
| 56 | nnMatrixDel(&A); | ||
| 57 | nnMatrixDel(&B); | ||
| 58 | } | ||
| 59 | |||
| 60 | TEST_CASE(nnMatrixMul_square_3x3) { | ||
| 61 | nnMatrix A = nnMatrixMake(3, 3); | ||
| 62 | nnMatrix B = nnMatrixMake(3, 3); | ||
| 63 | nnMatrix O = nnMatrixMake(3, 3); | ||
| 64 | |||
| 65 | nnMatrixInit(&A, (const R[]){ | ||
| 66 | 1, 2, 3, | ||
| 67 | 4, 5, 6, | ||
| 68 | 7, 8, 9, | ||
| 69 | }); | ||
| 70 | nnMatrixInit(&B, (const R[]){ | ||
| 71 | 2, 4, 3, | ||
| 72 | 6, 8, 5, | ||
| 73 | 1, 7, 9, | ||
| 74 | }); | ||
| 75 | nnMatrixMul(&A, &B, &O); | ||
| 76 | |||
| 77 | const R expected[3][3] = { | ||
| 78 | { 17, 41, 40 }, | ||
| 79 | { 44, 98, 91 }, | ||
| 80 | { 71, 155, 142 }, | ||
| 81 | }; | ||
| 82 | for (int i = 0; i < O.rows; ++i) { | ||
| 83 | for (int j = 0; j < O.cols; ++j) { | ||
| 84 | TEST_TRUE(double_eq(nnMatrixAt(&O, i, j), expected[i][j], EPS)); | ||
| 85 | } | ||
| 86 | } | ||
| 87 | |||
| 88 | nnMatrixDel(&A); | ||
| 89 | nnMatrixDel(&B); | ||
| 90 | nnMatrixDel(&O); | ||
| 91 | } | ||
| 92 | |||
| 93 | TEST_CASE(nnMatrixMul_non_square_2x3_3x1) { | ||
| 94 | nnMatrix A = nnMatrixMake(2, 3); | ||
| 95 | nnMatrix B = nnMatrixMake(3, 1); | ||
| 96 | nnMatrix O = nnMatrixMake(2, 1); | ||
| 97 | |||
| 98 | nnMatrixInit(&A, (const R[]){ | ||
| 99 | 1, 2, 3, | ||
| 100 | 4, 5, 6, | ||
| 101 | }); | ||
| 102 | nnMatrixInit(&B, (const R[]){ | ||
| 103 | 2, | ||
| 104 | 6, | ||
| 105 | 1, | ||
| 106 | }); | ||
| 107 | nnMatrixMul(&A, &B, &O); | ||
| 108 | |||
| 109 | const R expected[2][1] = { | ||
| 110 | { 17 }, | ||
| 111 | { 44 }, | ||
| 112 | }; | ||
| 113 | for (int i = 0; i < O.rows; ++i) { | ||
| 114 | for (int j = 0; j < O.cols; ++j) { | ||
| 115 | TEST_TRUE(double_eq(nnMatrixAt(&O, i, j), expected[i][j], EPS)); | ||
| 116 | } | ||
| 117 | } | ||
| 118 | |||
| 119 | nnMatrixDel(&A); | ||
| 120 | nnMatrixDel(&B); | ||
| 121 | nnMatrixDel(&O); | ||
| 122 | } | ||
| 123 | |||
| 124 | TEST_CASE(nnMatrixMulAdd_test) { | ||
| 125 | nnMatrix A = nnMatrixMake(2, 3); | ||
| 126 | nnMatrix B = nnMatrixMake(2, 3); | ||
| 127 | nnMatrix O = nnMatrixMake(2, 3); | ||
| 128 | const R scale = 2; | ||
| 129 | |||
| 130 | nnMatrixInit(&A, (const R[]){ | ||
| 131 | 1, 2, 3, | ||
| 132 | 4, 5, 6, | ||
| 133 | }); | ||
| 134 | nnMatrixInit(&B, (const R[]){ | ||
| 135 | 2, 3, 1, | ||
| 136 | 7, 4, 3 | ||
| 137 | }); | ||
| 138 | nnMatrixMulAdd(&A, &B, scale, &O); // O = A + B * scale | ||
| 139 | |||
| 140 | const R expected[2][3] = { | ||
| 141 | { 5, 8, 5 }, | ||
| 142 | { 18, 13, 12 }, | ||
| 143 | }; | ||
| 144 | for (int i = 0; i < O.rows; ++i) { | ||
| 145 | for (int j = 0; j < O.cols; ++j) { | ||
| 146 | TEST_TRUE(double_eq(nnMatrixAt(&O, i, j), expected[i][j], EPS)); | ||
| 147 | } | ||
| 148 | } | ||
| 149 | |||
| 150 | nnMatrixDel(&A); | ||
| 151 | nnMatrixDel(&B); | ||
| 152 | nnMatrixDel(&O); | ||
| 153 | } | ||
| 154 | |||
| 155 | TEST_CASE(nnMatrixMulSub_test) { | ||
| 156 | nnMatrix A = nnMatrixMake(2, 3); | ||
| 157 | nnMatrix B = nnMatrixMake(2, 3); | ||
| 158 | nnMatrix O = nnMatrixMake(2, 3); | ||
| 159 | const R scale = 2; | ||
| 160 | |||
| 161 | nnMatrixInit(&A, (const R[]){ | ||
| 162 | 1, 2, 3, | ||
| 163 | 4, 5, 6, | ||
| 164 | }); | ||
| 165 | nnMatrixInit(&B, (const R[]){ | ||
| 166 | 2, 3, 1, | ||
| 167 | 7, 4, 3 | ||
| 168 | }); | ||
| 169 | nnMatrixMulSub(&A, &B, scale, &O); // O = A - B * scale | ||
| 170 | |||
| 171 | const R expected[2][3] = { | ||
| 172 | { -3, -4, 1 }, | ||
| 173 | { -10, -3, 0 }, | ||
| 174 | }; | ||
| 175 | for (int i = 0; i < O.rows; ++i) { | ||
| 176 | for (int j = 0; j < O.cols; ++j) { | ||
| 177 | TEST_TRUE(double_eq(nnMatrixAt(&O, i, j), expected[i][j], EPS)); | ||
| 178 | } | ||
| 179 | } | ||
| 180 | |||
| 181 | nnMatrixDel(&A); | ||
| 182 | nnMatrixDel(&B); | ||
| 183 | nnMatrixDel(&O); | ||
| 184 | } | ||
| 185 | |||
| 186 | TEST_CASE(nnMatrixMulPairs_2x3) { | ||
| 187 | nnMatrix A = nnMatrixMake(2, 3); | ||
| 188 | nnMatrix B = nnMatrixMake(2, 3); | ||
| 189 | nnMatrix O = nnMatrixMake(2, 3); | ||
| 190 | |||
| 191 | nnMatrixInit(&A, (const R[]){ | ||
| 192 | 1, 2, 3, | ||
| 193 | 4, 5, 6, | ||
| 194 | }); | ||
| 195 | nnMatrixInit(&B, (const R[]){ | ||
| 196 | 2, 3, 1, | ||
| 197 | 7, 4, 3 | ||
| 198 | }); | ||
| 199 | nnMatrixMulPairs(&A, &B, &O); | ||
| 200 | |||
| 201 | const R expected[2][3] = { | ||
| 202 | { 2, 6, 3 }, | ||
| 203 | { 28, 20, 18 }, | ||
| 204 | }; | ||
| 205 | for (int i = 0; i < O.rows; ++i) { | ||
| 206 | for (int j = 0; j < O.cols; ++j) { | ||
| 207 | TEST_TRUE(double_eq(nnMatrixAt(&O, i, j), expected[i][j], EPS)); | ||
| 208 | } | ||
| 209 | } | ||
| 210 | |||
| 211 | nnMatrixDel(&A); | ||
| 212 | nnMatrixDel(&B); | ||
| 213 | nnMatrixDel(&O); | ||
| 214 | } | ||
| 215 | |||
| 216 | TEST_CASE(nnMatrixAdd_square_2x2) { | ||
| 217 | nnMatrix A = nnMatrixMake(2, 2); | ||
| 218 | nnMatrix B = nnMatrixMake(2, 2); | ||
| 219 | nnMatrix C = nnMatrixMake(2, 2); | ||
| 220 | |||
| 221 | nnMatrixInit(&A, (R[]) { | ||
| 222 | 1, 2, | ||
| 223 | 3, 4, | ||
| 224 | }); | ||
| 225 | nnMatrixInit(&B, (R[]) { | ||
| 226 | 2, 1, | ||
| 227 | 5, 3, | ||
| 228 | }); | ||
| 229 | |||
| 230 | nnMatrixAdd(&A, &B, &C); | ||
| 231 | |||
| 232 | TEST_TRUE(double_eq(nnMatrixAt(&C, 0, 0), 3, EPS)); | ||
| 233 | TEST_TRUE(double_eq(nnMatrixAt(&C, 0, 1), 3, EPS)); | ||
| 234 | TEST_TRUE(double_eq(nnMatrixAt(&C, 1, 0), 8, EPS)); | ||
| 235 | TEST_TRUE(double_eq(nnMatrixAt(&C, 1, 1), 7, EPS)); | ||
| 236 | |||
| 237 | nnMatrixDel(&A); | ||
| 238 | nnMatrixDel(&B); | ||
| 239 | nnMatrixDel(&C); | ||
| 240 | } | ||
| 241 | |||
| 242 | TEST_CASE(nnMatrixSub_square_2x2) { | ||
| 243 | nnMatrix A = nnMatrixMake(2, 2); | ||
| 244 | nnMatrix B = nnMatrixMake(2, 2); | ||
| 245 | nnMatrix C = nnMatrixMake(2, 2); | ||
| 246 | |||
| 247 | nnMatrixInit(&A, (R[]) { | ||
| 248 | 1, 2, | ||
| 249 | 3, 4, | ||
| 250 | }); | ||
| 251 | nnMatrixInit(&B, (R[]) { | ||
| 252 | 2, 1, | ||
| 253 | 5, 3, | ||
| 254 | }); | ||
| 255 | |||
| 256 | nnMatrixSub(&A, &B, &C); | ||
| 257 | |||
| 258 | TEST_TRUE(double_eq(nnMatrixAt(&C, 0, 0), -1, EPS)); | ||
| 259 | TEST_TRUE(double_eq(nnMatrixAt(&C, 0, 1), +1, EPS)); | ||
| 260 | TEST_TRUE(double_eq(nnMatrixAt(&C, 1, 0), -2, EPS)); | ||
| 261 | TEST_TRUE(double_eq(nnMatrixAt(&C, 1, 1), +1, EPS)); | ||
| 262 | |||
| 263 | nnMatrixDel(&A); | ||
| 264 | nnMatrixDel(&B); | ||
| 265 | nnMatrixDel(&C); | ||
| 266 | } | ||
| 267 | |||
| 268 | TEST_CASE(nnMatrixAddRow_test) { | ||
| 269 | nnMatrix A = nnMatrixMake(2, 3); | ||
| 270 | nnMatrix B = nnMatrixMake(1, 3); | ||
| 271 | nnMatrix C = nnMatrixMake(2, 3); | ||
| 272 | |||
| 273 | nnMatrixInit(&A, (R[]) { | ||
| 274 | 1, 2, 3, | ||
| 275 | 4, 5, 6, | ||
| 276 | }); | ||
| 277 | nnMatrixInit(&B, (R[]) { | ||
| 278 | 2, 1, 3, | ||
| 279 | }); | ||
| 280 | |||
| 281 | nnMatrixAddRow(&A, &B, &C); | ||
| 282 | |||
| 283 | TEST_TRUE(double_eq(nnMatrixAt(&C, 0, 0), 3, EPS)); | ||
| 284 | TEST_TRUE(double_eq(nnMatrixAt(&C, 0, 1), 3, EPS)); | ||
| 285 | TEST_TRUE(double_eq(nnMatrixAt(&C, 0, 2), 6, EPS)); | ||
| 286 | TEST_TRUE(double_eq(nnMatrixAt(&C, 1, 0), 6, EPS)); | ||
| 287 | TEST_TRUE(double_eq(nnMatrixAt(&C, 1, 1), 6, EPS)); | ||
| 288 | TEST_TRUE(double_eq(nnMatrixAt(&C, 1, 2), 9, EPS)); | ||
| 289 | |||
| 290 | nnMatrixDel(&A); | ||
| 291 | nnMatrixDel(&B); | ||
| 292 | nnMatrixDel(&C); | ||
| 293 | } | ||
| 294 | |||
| 295 | TEST_CASE(nnMatrixTranspose_square_2x2) { | ||
| 296 | nnMatrix A = nnMatrixMake(2, 2); | ||
| 297 | nnMatrix B = nnMatrixMake(2, 2); | ||
| 298 | |||
| 299 | nnMatrixInit(&A, (R[]) { | ||
| 300 | 1, 2, | ||
| 301 | 3, 4 | ||
| 302 | }); | ||
| 303 | |||
| 304 | nnMatrixTranspose(&A, &B); | ||
| 305 | TEST_TRUE(double_eq(nnMatrixAt(&B, 0, 0), 1, EPS)); | ||
| 306 | TEST_TRUE(double_eq(nnMatrixAt(&B, 0, 1), 3, EPS)); | ||
| 307 | TEST_TRUE(double_eq(nnMatrixAt(&B, 1, 0), 2, EPS)); | ||
| 308 | TEST_TRUE(double_eq(nnMatrixAt(&B, 1, 1), 4, EPS)); | ||
| 309 | |||
| 310 | nnMatrixDel(&A); | ||
| 311 | nnMatrixDel(&B); | ||
| 312 | } | ||
| 313 | |||
| 314 | TEST_CASE(nnMatrixTranspose_non_square_2x1) { | ||
| 315 | nnMatrix A = nnMatrixMake(2, 1); | ||
| 316 | nnMatrix B = nnMatrixMake(1, 2); | ||
| 317 | |||
| 318 | nnMatrixInit(&A, (R[]) { | ||
| 319 | 1, | ||
| 320 | 3, | ||
| 321 | }); | ||
| 322 | |||
| 323 | nnMatrixTranspose(&A, &B); | ||
| 324 | TEST_TRUE(double_eq(nnMatrixAt(&B, 0, 0), 1, EPS)); | ||
| 325 | TEST_TRUE(double_eq(nnMatrixAt(&B, 0, 1), 3, EPS)); | ||
| 326 | |||
| 327 | nnMatrixDel(&A); | ||
| 328 | nnMatrixDel(&B); | ||
| 329 | } | ||
| 330 | |||
| 331 | TEST_CASE(nnMatrixGt_test) { | ||
| 332 | nnMatrix A = nnMatrixMake(2, 3); | ||
| 333 | nnMatrix B = nnMatrixMake(2, 3); | ||
| 334 | |||
| 335 | nnMatrixInit(&A, (R[]) { | ||
| 336 | -3, 2, 0, | ||
| 337 | 4, -1, 5 | ||
| 338 | }); | ||
| 339 | |||
| 340 | nnMatrixGt(&A, 0, &B); | ||
| 341 | TEST_TRUE(double_eq(nnMatrixAt(&B, 0, 0), 0, EPS)); | ||
| 342 | TEST_TRUE(double_eq(nnMatrixAt(&B, 0, 1), 1, EPS)); | ||
| 343 | TEST_TRUE(double_eq(nnMatrixAt(&B, 0, 2), 0, EPS)); | ||
| 344 | TEST_TRUE(double_eq(nnMatrixAt(&B, 1, 0), 1, EPS)); | ||
| 345 | TEST_TRUE(double_eq(nnMatrixAt(&B, 1, 1), 0, EPS)); | ||
| 346 | TEST_TRUE(double_eq(nnMatrixAt(&B, 1, 2), 1, EPS)); | ||
| 347 | |||
| 348 | nnMatrixDel(&A); | ||
| 349 | nnMatrixDel(&B); | ||
| 350 | } | ||
