diff options
author | 3gg <3gg@shellblade.net> | 2023-12-16 10:21:16 -0800 |
---|---|---|
committer | 3gg <3gg@shellblade.net> | 2023-12-16 10:21:16 -0800 |
commit | 653e98e029a0d0f110b0ac599e50406060bb0f87 (patch) | |
tree | 6f909215218f6720266bde1b3f49aeddad8b1da3 /src/lib/test | |
parent | 3df7b6fb0c65295eed4590e6f166d60e89b3c68e (diff) |
Decouple activations from linear layer.
Diffstat (limited to 'src/lib/test')
-rw-r--r-- | src/lib/test/neuralnet_test.c | 103 | ||||
-rw-r--r-- | src/lib/test/train_linear_perceptron_non_origin_test.c | 46 | ||||
-rw-r--r-- | src/lib/test/train_linear_perceptron_test.c | 44 | ||||
-rw-r--r-- | src/lib/test/train_sigmoid_test.c | 46 | ||||
-rw-r--r-- | src/lib/test/train_xor_test.c | 55 |
5 files changed, 169 insertions, 125 deletions
diff --git a/src/lib/test/neuralnet_test.c b/src/lib/test/neuralnet_test.c index 14d9438..0f8d7b8 100644 --- a/src/lib/test/neuralnet_test.c +++ b/src/lib/test/neuralnet_test.c | |||
@@ -1,8 +1,8 @@ | |||
1 | #include <neuralnet/neuralnet.h> | 1 | #include <neuralnet/neuralnet.h> |
2 | 2 | ||
3 | #include <neuralnet/matrix.h> | ||
4 | #include "activation.h" | 3 | #include "activation.h" |
5 | #include "neuralnet_impl.h" | 4 | #include "neuralnet_impl.h" |
5 | #include <neuralnet/matrix.h> | ||
6 | 6 | ||
7 | #include "test.h" | 7 | #include "test.h" |
8 | #include "test_util.h" | 8 | #include "test_util.h" |
@@ -10,23 +10,31 @@ | |||
10 | #include <assert.h> | 10 | #include <assert.h> |
11 | 11 | ||
12 | TEST_CASE(neuralnet_perceptron_test) { | 12 | TEST_CASE(neuralnet_perceptron_test) { |
13 | const int num_layers = 1; | 13 | const int num_layers = 2; |
14 | const int layer_sizes[] = { 1, 1 }; | 14 | const int input_size = 1; |
15 | const nnActivation layer_activations[] = { nnSigmoid }; | 15 | const R weights[] = {0.3}; |
16 | const R weights[] = { 0.3 }; | 16 | const R biases[] = {0.0}; |
17 | const nnLayer layers[] = { | ||
18 | {.type = nnLinear, | ||
19 | .linear = | ||
20 | {.weights = nnMatrixFromArray(1, 1, weights), | ||
21 | .biases = nnMatrixFromArray(1, 1, biases)}}, | ||
22 | {.type = nnSigmoid}, | ||
23 | }; | ||
17 | 24 | ||
18 | nnNeuralNetwork* net = nnMakeNet(num_layers, layer_sizes, layer_activations); | 25 | nnNeuralNetwork* net = nnMakeNet(layers, num_layers, input_size); |
19 | assert(net); | 26 | assert(net); |
20 | nnSetWeights(net, weights); | ||
21 | 27 | ||
22 | nnQueryObject* query = nnMakeQueryObject(net, /*num_inputs=*/1); | 28 | nnQueryObject* query = nnMakeQueryObject(net, 1); |
23 | 29 | ||
24 | const R input[] = { 0.9 }; | 30 | const R input[] = {0.9}; |
25 | R output[1]; | 31 | R output[1]; |
26 | nnQueryArray(net, query, input, output); | 32 | nnQueryArray(net, query, input, output); |
27 | 33 | ||
28 | const R expected_output = sigmoid(input[0] * weights[0]); | 34 | const R expected_output = sigmoid(input[0] * weights[0]); |
29 | printf("\nOutput: %f, Expected: %f\n", output[0], expected_output); | 35 | printf( |
36 | "\n[neuralnet_perceptron_test] Output: %f, Expected: %f\n", output[0], | ||
37 | expected_output); | ||
30 | TEST_TRUE(double_eq(output[0], expected_output, EPS)); | 38 | TEST_TRUE(double_eq(output[0], expected_output, EPS)); |
31 | 39 | ||
32 | nnDeleteQueryObject(&query); | 40 | nnDeleteQueryObject(&query); |
@@ -34,53 +42,66 @@ TEST_CASE(neuralnet_perceptron_test) { | |||
34 | } | 42 | } |
35 | 43 | ||
36 | TEST_CASE(neuralnet_xor_test) { | 44 | TEST_CASE(neuralnet_xor_test) { |
37 | const int num_layers = 2; | 45 | // First (hidden) layer. |
38 | const int layer_sizes[] = { 2, 2, 1 }; | 46 | const R weights0[] = {1, 1, 1, 1}; |
39 | const nnActivation layer_activations[] = { nnRelu, nnIdentity }; | 47 | const R biases0[] = {0, -1}; |
40 | const R weights[] = { | 48 | // Second (output) layer. |
41 | 1, 1, 1, 1, // First (hidden) layer. | 49 | const R weights1[] = {1, -2}; |
42 | 1, -2 // Second (output) layer. | 50 | const R biases1[] = {0}; |
43 | }; | 51 | // Network. |
44 | const R biases[] = { | 52 | const int num_layers = 3; |
45 | 0, -1, // First (hidden) layer. | 53 | const int input_size = 2; |
46 | 0 // Second (output) layer. | 54 | const nnLayer layers[] = { |
55 | {.type = nnLinear, | ||
56 | .linear = | ||
57 | {.weights = nnMatrixFromArray(2, 2, weights0), | ||
58 | .biases = nnMatrixFromArray(1, 2, biases0)}}, | ||
59 | {.type = nnRelu}, | ||
60 | {.type = nnLinear, | ||
61 | .linear = | ||
62 | {.weights = nnMatrixFromArray(2, 1, weights1), | ||
63 | .biases = nnMatrixFromArray(1, 1, biases1)}}, | ||
47 | }; | 64 | }; |
48 | 65 | ||
49 | nnNeuralNetwork* net = nnMakeNet(num_layers, layer_sizes, layer_activations); | 66 | nnNeuralNetwork* net = nnMakeNet(layers, num_layers, input_size); |
50 | assert(net); | 67 | assert(net); |
51 | nnSetWeights(net, weights); | ||
52 | nnSetBiases(net, biases); | ||
53 | 68 | ||
54 | // First layer weights. | 69 | // First layer weights. |
55 | TEST_EQUAL(nnMatrixAt(&net->weights[0], 0, 0), 1); | 70 | TEST_EQUAL(nnMatrixAt(&net->layers[0].linear.weights, 0, 0), 1); |
56 | TEST_EQUAL(nnMatrixAt(&net->weights[0], 0, 1), 1); | 71 | TEST_EQUAL(nnMatrixAt(&net->layers[0].linear.weights, 0, 1), 1); |
57 | TEST_EQUAL(nnMatrixAt(&net->weights[0], 0, 2), 1); | 72 | TEST_EQUAL(nnMatrixAt(&net->layers[0].linear.weights, 0, 2), 1); |
58 | TEST_EQUAL(nnMatrixAt(&net->weights[0], 0, 3), 1); | 73 | TEST_EQUAL(nnMatrixAt(&net->layers[0].linear.weights, 0, 3), 1); |
59 | // Second layer weights. | 74 | // Second linear layer (third layer) weights. |
60 | TEST_EQUAL(nnMatrixAt(&net->weights[1], 0, 0), 1); | 75 | TEST_EQUAL(nnMatrixAt(&net->layers[2].linear.weights, 0, 0), 1); |
61 | TEST_EQUAL(nnMatrixAt(&net->weights[1], 0, 1), -2); | 76 | TEST_EQUAL(nnMatrixAt(&net->layers[2].linear.weights, 0, 1), -2); |
62 | // First layer biases. | 77 | // First layer biases. |
63 | TEST_EQUAL(nnMatrixAt(&net->biases[0], 0, 0), 0); | 78 | TEST_EQUAL(nnMatrixAt(&net->layers[0].linear.biases, 0, 0), 0); |
64 | TEST_EQUAL(nnMatrixAt(&net->biases[0], 0, 1), -1); | 79 | TEST_EQUAL(nnMatrixAt(&net->layers[0].linear.biases, 0, 1), -1); |
65 | // Second layer biases. | 80 | // Second linear layer (third layer) biases. |
66 | TEST_EQUAL(nnMatrixAt(&net->biases[1], 0, 0), 0); | 81 | TEST_EQUAL(nnMatrixAt(&net->layers[2].linear.biases, 0, 0), 0); |
67 | 82 | ||
68 | // Test. | 83 | // Test. |
69 | 84 | ||
70 | #define M 4 | 85 | #define M 4 |
71 | 86 | ||
72 | nnQueryObject* query = nnMakeQueryObject(net, /*num_inputs=*/M); | 87 | nnQueryObject* query = nnMakeQueryObject(net, M); |
73 | 88 | ||
74 | const R test_inputs[M][2] = { { 0., 0. }, { 1., 0. }, { 0., 1. }, { 1., 1. } }; | 89 | const R test_inputs[M][2] = { |
90 | {0., 0.}, | ||
91 | {1., 0.}, | ||
92 | {0., 1.}, | ||
93 | {1., 1.} | ||
94 | }; | ||
75 | nnMatrix test_inputs_matrix = nnMatrixMake(M, 2); | 95 | nnMatrix test_inputs_matrix = nnMatrixMake(M, 2); |
76 | nnMatrixInit(&test_inputs_matrix, (const R*)test_inputs); | 96 | nnMatrixInit(&test_inputs_matrix, (const R*)test_inputs); |
77 | nnQuery(net, query, &test_inputs_matrix); | 97 | nnQuery(net, query, &test_inputs_matrix); |
78 | 98 | ||
79 | const R expected_outputs[M] = { 0., 1., 1., 0. }; | 99 | const R expected_outputs[M] = {0., 1., 1., 0.}; |
80 | for (int i = 0; i < M; ++i) { | 100 | for (int i = 0; i < M; ++i) { |
81 | const R test_output = nnMatrixAt(nnNetOutputs(query), i, 0); | 101 | const R test_output = nnMatrixAt(nnNetOutputs(query), i, 0); |
82 | printf("\nInput: (%f, %f), Output: %f, Expected: %f\n", | 102 | printf( |
83 | test_inputs[i][0], test_inputs[i][1], test_output, expected_outputs[i]); | 103 | "\nInput: (%f, %f), Output: %f, Expected: %f\n", test_inputs[i][0], |
104 | test_inputs[i][1], test_output, expected_outputs[i]); | ||
84 | } | 105 | } |
85 | for (int i = 0; i < M; ++i) { | 106 | for (int i = 0; i < M; ++i) { |
86 | const R test_output = nnMatrixAt(nnNetOutputs(query), i, 0); | 107 | const R test_output = nnMatrixAt(nnNetOutputs(query), i, 0); |
diff --git a/src/lib/test/train_linear_perceptron_non_origin_test.c b/src/lib/test/train_linear_perceptron_non_origin_test.c index 5a320ac..40a42e0 100644 --- a/src/lib/test/train_linear_perceptron_non_origin_test.c +++ b/src/lib/test/train_linear_perceptron_non_origin_test.c | |||
@@ -1,9 +1,8 @@ | |||
1 | #include <neuralnet/train.h> | 1 | #include <neuralnet/train.h> |
2 | 2 | ||
3 | #include "neuralnet_impl.h" | ||
3 | #include <neuralnet/matrix.h> | 4 | #include <neuralnet/matrix.h> |
4 | #include <neuralnet/neuralnet.h> | 5 | #include <neuralnet/neuralnet.h> |
5 | #include "activation.h" | ||
6 | #include "neuralnet_impl.h" | ||
7 | 6 | ||
8 | #include "test.h" | 7 | #include "test.h" |
9 | #include "test_util.h" | 8 | #include "test_util.h" |
@@ -11,19 +10,21 @@ | |||
11 | #include <assert.h> | 10 | #include <assert.h> |
12 | 11 | ||
13 | TEST_CASE(neuralnet_train_linear_perceptron_non_origin_test) { | 12 | TEST_CASE(neuralnet_train_linear_perceptron_non_origin_test) { |
14 | const int num_layers = 1; | 13 | const int num_layers = 1; |
15 | const int layer_sizes[] = { 1, 1 }; | 14 | const int input_size = 1; |
16 | const nnActivation layer_activations[] = { nnIdentity }; | 15 | const nnLayer layers[] = { |
16 | {.type = nnLinear, .linear = {.input_size = 1, .output_size = 1}} | ||
17 | }; | ||
17 | 18 | ||
18 | nnNeuralNetwork* net = nnMakeNet(num_layers, layer_sizes, layer_activations); | 19 | nnNeuralNetwork* net = nnMakeNet(layers, num_layers, input_size); |
19 | assert(net); | 20 | assert(net); |
20 | 21 | ||
21 | // Train. | 22 | // Train. |
22 | 23 | ||
23 | // Try to learn the Y = 2X + 1 line. | 24 | // Try to learn the Y = 2X + 1 line. |
24 | #define N 2 | 25 | #define N 2 |
25 | const R inputs[N] = { 0., 1. }; | 26 | const R inputs[N] = {0., 1.}; |
26 | const R targets[N] = { 1., 3. }; | 27 | const R targets[N] = {1., 3.}; |
27 | 28 | ||
28 | nnMatrix inputs_matrix = nnMatrixMake(N, 1); | 29 | nnMatrix inputs_matrix = nnMatrixMake(N, 1); |
29 | nnMatrix targets_matrix = nnMatrixMake(N, 1); | 30 | nnMatrix targets_matrix = nnMatrixMake(N, 1); |
@@ -31,31 +32,32 @@ TEST_CASE(neuralnet_train_linear_perceptron_non_origin_test) { | |||
31 | nnMatrixInit(&targets_matrix, targets); | 32 | nnMatrixInit(&targets_matrix, targets); |
32 | 33 | ||
33 | nnTrainingParams params = { | 34 | nnTrainingParams params = { |
34 | .learning_rate = 0.7, | 35 | .learning_rate = 0.7, |
35 | .max_iterations = 20, | 36 | .max_iterations = 20, |
36 | .seed = 0, | 37 | .seed = 0, |
37 | .weight_init = nnWeightInit01, | 38 | .weight_init = nnWeightInit01, |
38 | .debug = false, | 39 | .debug = false, |
39 | }; | 40 | }; |
40 | 41 | ||
41 | nnTrain(net, &inputs_matrix, &targets_matrix, ¶ms); | 42 | nnTrain(net, &inputs_matrix, &targets_matrix, ¶ms); |
42 | 43 | ||
43 | const R weight = nnMatrixAt(&net->weights[0], 0, 0); | 44 | const R weight = nnMatrixAt(&net->layers[0].linear.weights, 0, 0); |
44 | const R expected_weight = 2.0; | 45 | const R expected_weight = 2.0; |
45 | printf("\nTrained network weight: %f, Expected: %f\n", weight, expected_weight); | 46 | printf( |
47 | "\nTrained network weight: %f, Expected: %f\n", weight, expected_weight); | ||
46 | TEST_TRUE(double_eq(weight, expected_weight, WEIGHT_EPS)); | 48 | TEST_TRUE(double_eq(weight, expected_weight, WEIGHT_EPS)); |
47 | 49 | ||
48 | const R bias = nnMatrixAt(&net->biases[0], 0, 0); | 50 | const R bias = nnMatrixAt(&net->layers[0].linear.biases, 0, 0); |
49 | const R expected_bias = 1.0; | 51 | const R expected_bias = 1.0; |
50 | printf("Trained network bias: %f, Expected: %f\n", bias, expected_bias); | 52 | printf("Trained network bias: %f, Expected: %f\n", bias, expected_bias); |
51 | TEST_TRUE(double_eq(bias, expected_bias, WEIGHT_EPS)); | 53 | TEST_TRUE(double_eq(bias, expected_bias, WEIGHT_EPS)); |
52 | 54 | ||
53 | // Test. | 55 | // Test. |
54 | 56 | ||
55 | nnQueryObject* query = nnMakeQueryObject(net, /*num_inputs=*/1); | 57 | nnQueryObject* query = nnMakeQueryObject(net, 1); |
56 | 58 | ||
57 | const R test_input[] = { 2.3 }; | 59 | const R test_input[] = {2.3}; |
58 | R test_output[1]; | 60 | R test_output[1]; |
59 | nnQueryArray(net, query, test_input, test_output); | 61 | nnQueryArray(net, query, test_input, test_output); |
60 | 62 | ||
61 | const R expected_output = test_input[0] * expected_weight + expected_bias; | 63 | const R expected_output = test_input[0] * expected_weight + expected_bias; |
diff --git a/src/lib/test/train_linear_perceptron_test.c b/src/lib/test/train_linear_perceptron_test.c index 2b1336d..667643b 100644 --- a/src/lib/test/train_linear_perceptron_test.c +++ b/src/lib/test/train_linear_perceptron_test.c | |||
@@ -1,9 +1,8 @@ | |||
1 | #include <neuralnet/train.h> | 1 | #include <neuralnet/train.h> |
2 | 2 | ||
3 | #include "neuralnet_impl.h" | ||
3 | #include <neuralnet/matrix.h> | 4 | #include <neuralnet/matrix.h> |
4 | #include <neuralnet/neuralnet.h> | 5 | #include <neuralnet/neuralnet.h> |
5 | #include "activation.h" | ||
6 | #include "neuralnet_impl.h" | ||
7 | 6 | ||
8 | #include "test.h" | 7 | #include "test.h" |
9 | #include "test_util.h" | 8 | #include "test_util.h" |
@@ -11,19 +10,21 @@ | |||
11 | #include <assert.h> | 10 | #include <assert.h> |
12 | 11 | ||
13 | TEST_CASE(neuralnet_train_linear_perceptron_test) { | 12 | TEST_CASE(neuralnet_train_linear_perceptron_test) { |
14 | const int num_layers = 1; | 13 | const int num_layers = 1; |
15 | const int layer_sizes[] = { 1, 1 }; | 14 | const int input_size = 1; |
16 | const nnActivation layer_activations[] = { nnIdentity }; | 15 | const nnLayer layers[] = { |
16 | {.type = nnLinear, .linear = {.input_size = 1, .output_size = 1}} | ||
17 | }; | ||
17 | 18 | ||
18 | nnNeuralNetwork* net = nnMakeNet(num_layers, layer_sizes, layer_activations); | 19 | nnNeuralNetwork* net = nnMakeNet(layers, num_layers, input_size); |
19 | assert(net); | 20 | assert(net); |
20 | 21 | ||
21 | // Train. | 22 | // Train. |
22 | 23 | ||
23 | // Try to learn the Y=X line. | 24 | // Try to learn the Y=X line. |
24 | #define N 2 | 25 | #define N 2 |
25 | const R inputs[N] = { 0., 1. }; | 26 | const R inputs[N] = {0., 1.}; |
26 | const R targets[N] = { 0., 1. }; | 27 | const R targets[N] = {0., 1.}; |
27 | 28 | ||
28 | nnMatrix inputs_matrix = nnMatrixMake(N, 1); | 29 | nnMatrix inputs_matrix = nnMatrixMake(N, 1); |
29 | nnMatrix targets_matrix = nnMatrixMake(N, 1); | 30 | nnMatrix targets_matrix = nnMatrixMake(N, 1); |
@@ -31,26 +32,27 @@ TEST_CASE(neuralnet_train_linear_perceptron_test) { | |||
31 | nnMatrixInit(&targets_matrix, targets); | 32 | nnMatrixInit(&targets_matrix, targets); |
32 | 33 | ||
33 | nnTrainingParams params = { | 34 | nnTrainingParams params = { |
34 | .learning_rate = 0.7, | 35 | .learning_rate = 0.7, |
35 | .max_iterations = 10, | 36 | .max_iterations = 10, |
36 | .seed = 0, | 37 | .seed = 0, |
37 | .weight_init = nnWeightInit01, | 38 | .weight_init = nnWeightInit01, |
38 | .debug = false, | 39 | .debug = false, |
39 | }; | 40 | }; |
40 | 41 | ||
41 | nnTrain(net, &inputs_matrix, &targets_matrix, ¶ms); | 42 | nnTrain(net, &inputs_matrix, &targets_matrix, ¶ms); |
42 | 43 | ||
43 | const R weight = nnMatrixAt(&net->weights[0], 0, 0); | 44 | const R weight = nnMatrixAt(&net->layers[0].linear.weights, 0, 0); |
44 | const R expected_weight = 1.0; | 45 | const R expected_weight = 1.0; |
45 | printf("\nTrained network weight: %f, Expected: %f\n", weight, expected_weight); | 46 | printf( |
47 | "\nTrained network weight: %f, Expected: %f\n", weight, expected_weight); | ||
46 | TEST_TRUE(double_eq(weight, expected_weight, WEIGHT_EPS)); | 48 | TEST_TRUE(double_eq(weight, expected_weight, WEIGHT_EPS)); |
47 | 49 | ||
48 | // Test. | 50 | // Test. |
49 | 51 | ||
50 | nnQueryObject* query = nnMakeQueryObject(net, /*num_inputs=*/1); | 52 | nnQueryObject* query = nnMakeQueryObject(net, 1); |
51 | 53 | ||
52 | const R test_input[] = { 2.3 }; | 54 | const R test_input[] = {2.3}; |
53 | R test_output[1]; | 55 | R test_output[1]; |
54 | nnQueryArray(net, query, test_input, test_output); | 56 | nnQueryArray(net, query, test_input, test_output); |
55 | 57 | ||
56 | const R expected_output = test_input[0]; | 58 | const R expected_output = test_input[0]; |
diff --git a/src/lib/test/train_sigmoid_test.c b/src/lib/test/train_sigmoid_test.c index 588e7ca..39a84b0 100644 --- a/src/lib/test/train_sigmoid_test.c +++ b/src/lib/test/train_sigmoid_test.c | |||
@@ -1,9 +1,9 @@ | |||
1 | #include <neuralnet/train.h> | 1 | #include <neuralnet/train.h> |
2 | 2 | ||
3 | #include <neuralnet/matrix.h> | ||
4 | #include <neuralnet/neuralnet.h> | ||
5 | #include "activation.h" | 3 | #include "activation.h" |
6 | #include "neuralnet_impl.h" | 4 | #include "neuralnet_impl.h" |
5 | #include <neuralnet/matrix.h> | ||
6 | #include <neuralnet/neuralnet.h> | ||
7 | 7 | ||
8 | #include "test.h" | 8 | #include "test.h" |
9 | #include "test_util.h" | 9 | #include "test_util.h" |
@@ -11,21 +11,24 @@ | |||
11 | #include <assert.h> | 11 | #include <assert.h> |
12 | 12 | ||
13 | TEST_CASE(neuralnet_train_sigmoid_test) { | 13 | TEST_CASE(neuralnet_train_sigmoid_test) { |
14 | const int num_layers = 1; | 14 | const int num_layers = 2; |
15 | const int layer_sizes[] = { 1, 1 }; | 15 | const int input_size = 1; |
16 | const nnActivation layer_activations[] = { nnSigmoid }; | 16 | const nnLayer layers[] = { |
17 | {.type = nnLinear, .linear = {.input_size = 1, .output_size = 1}}, | ||
18 | {.type = nnSigmoid}, | ||
19 | }; | ||
17 | 20 | ||
18 | nnNeuralNetwork* net = nnMakeNet(num_layers, layer_sizes, layer_activations); | 21 | nnNeuralNetwork* net = nnMakeNet(layers, num_layers, input_size); |
19 | assert(net); | 22 | assert(net); |
20 | 23 | ||
21 | // Train. | 24 | // Train. |
22 | 25 | ||
23 | // Try to learn the sigmoid function. | 26 | // Try to learn the sigmoid function. |
24 | #define N 3 | 27 | #define N 3 |
25 | R inputs[N]; | 28 | R inputs[N]; |
26 | R targets[N]; | 29 | R targets[N]; |
27 | for (int i = 0; i < N; ++i) { | 30 | for (int i = 0; i < N; ++i) { |
28 | inputs[i] = lerp(-1, +1, (R)i / (R)(N-1)); | 31 | inputs[i] = lerp(-1, +1, (R)i / (R)(N - 1)); |
29 | targets[i] = sigmoid(inputs[i]); | 32 | targets[i] = sigmoid(inputs[i]); |
30 | } | 33 | } |
31 | 34 | ||
@@ -35,29 +38,30 @@ TEST_CASE(neuralnet_train_sigmoid_test) { | |||
35 | nnMatrixInit(&targets_matrix, targets); | 38 | nnMatrixInit(&targets_matrix, targets); |
36 | 39 | ||
37 | nnTrainingParams params = { | 40 | nnTrainingParams params = { |
38 | .learning_rate = 0.9, | 41 | .learning_rate = 0.9, |
39 | .max_iterations = 100, | 42 | .max_iterations = 100, |
40 | .seed = 0, | 43 | .seed = 0, |
41 | .weight_init = nnWeightInit01, | 44 | .weight_init = nnWeightInit01, |
42 | .debug = false, | 45 | .debug = false, |
43 | }; | 46 | }; |
44 | 47 | ||
45 | nnTrain(net, &inputs_matrix, &targets_matrix, ¶ms); | 48 | nnTrain(net, &inputs_matrix, &targets_matrix, ¶ms); |
46 | 49 | ||
47 | const R weight = nnMatrixAt(&net->weights[0], 0, 0); | 50 | const R weight = nnMatrixAt(&net->layers[0].linear.weights, 0, 0); |
48 | const R expected_weight = 1.0; | 51 | const R expected_weight = 1.0; |
49 | printf("\nTrained network weight: %f, Expected: %f\n", weight, expected_weight); | 52 | printf( |
53 | "\nTrained network weight: %f, Expected: %f\n", weight, expected_weight); | ||
50 | TEST_TRUE(double_eq(weight, expected_weight, WEIGHT_EPS)); | 54 | TEST_TRUE(double_eq(weight, expected_weight, WEIGHT_EPS)); |
51 | 55 | ||
52 | // Test. | 56 | // Test. |
53 | 57 | ||
54 | nnQueryObject* query = nnMakeQueryObject(net, /*num_inputs=*/1); | 58 | nnQueryObject* query = nnMakeQueryObject(net, 1); |
55 | 59 | ||
56 | const R test_input[] = { 0.3 }; | 60 | const R test_input[] = {0.3}; |
57 | R test_output[1]; | 61 | R test_output[1]; |
58 | nnQueryArray(net, query, test_input, test_output); | 62 | nnQueryArray(net, query, test_input, test_output); |
59 | 63 | ||
60 | const R expected_output = 0.574442516811659; // sigmoid(0.3) | 64 | const R expected_output = 0.574442516811659; // sigmoid(0.3) |
61 | printf("Output: %f, Expected: %f\n", test_output[0], expected_output); | 65 | printf("Output: %f, Expected: %f\n", test_output[0], expected_output); |
62 | TEST_TRUE(double_eq(test_output[0], expected_output, OUTPUT_EPS)); | 66 | TEST_TRUE(double_eq(test_output[0], expected_output, OUTPUT_EPS)); |
63 | 67 | ||
diff --git a/src/lib/test/train_xor_test.c b/src/lib/test/train_xor_test.c index 6ddc6e0..78695a3 100644 --- a/src/lib/test/train_xor_test.c +++ b/src/lib/test/train_xor_test.c | |||
@@ -1,9 +1,9 @@ | |||
1 | #include <neuralnet/train.h> | 1 | #include <neuralnet/train.h> |
2 | 2 | ||
3 | #include <neuralnet/matrix.h> | ||
4 | #include <neuralnet/neuralnet.h> | ||
5 | #include "activation.h" | 3 | #include "activation.h" |
6 | #include "neuralnet_impl.h" | 4 | #include "neuralnet_impl.h" |
5 | #include <neuralnet/matrix.h> | ||
6 | #include <neuralnet/neuralnet.h> | ||
7 | 7 | ||
8 | #include "test.h" | 8 | #include "test.h" |
9 | #include "test_util.h" | 9 | #include "test_util.h" |
@@ -11,18 +11,27 @@ | |||
11 | #include <assert.h> | 11 | #include <assert.h> |
12 | 12 | ||
13 | TEST_CASE(neuralnet_train_xor_test) { | 13 | TEST_CASE(neuralnet_train_xor_test) { |
14 | const int num_layers = 2; | 14 | const int num_layers = 3; |
15 | const int layer_sizes[] = { 2, 2, 1 }; | 15 | const int input_size = 2; |
16 | const nnActivation layer_activations[] = { nnRelu, nnIdentity }; | 16 | const nnLayer layers[] = { |
17 | {.type = nnLinear, .linear = {.input_size = 2, .output_size = 2}}, | ||
18 | {.type = nnRelu}, | ||
19 | {.type = nnLinear, .linear = {.input_size = 2, .output_size = 1}} | ||
20 | }; | ||
17 | 21 | ||
18 | nnNeuralNetwork* net = nnMakeNet(num_layers, layer_sizes, layer_activations); | 22 | nnNeuralNetwork* net = nnMakeNet(layers, num_layers, input_size); |
19 | assert(net); | 23 | assert(net); |
20 | 24 | ||
21 | // Train. | 25 | // Train. |
22 | 26 | ||
23 | #define N 4 | 27 | #define N 4 |
24 | const R inputs[N][2] = { { 0., 0. }, { 0., 1. }, { 1., 0. }, { 1., 1. } }; | 28 | const R inputs[N][2] = { |
25 | const R targets[N] = { 0., 1., 1., 0. }; | 29 | {0., 0.}, |
30 | {0., 1.}, | ||
31 | {1., 0.}, | ||
32 | {1., 1.} | ||
33 | }; | ||
34 | const R targets[N] = {0., 1., 1., 0.}; | ||
26 | 35 | ||
27 | nnMatrix inputs_matrix = nnMatrixMake(N, 2); | 36 | nnMatrix inputs_matrix = nnMatrixMake(N, 2); |
28 | nnMatrix targets_matrix = nnMatrixMake(N, 1); | 37 | nnMatrix targets_matrix = nnMatrixMake(N, 1); |
@@ -30,31 +39,37 @@ TEST_CASE(neuralnet_train_xor_test) { | |||
30 | nnMatrixInit(&targets_matrix, targets); | 39 | nnMatrixInit(&targets_matrix, targets); |
31 | 40 | ||
32 | nnTrainingParams params = { | 41 | nnTrainingParams params = { |
33 | .learning_rate = 0.1, | 42 | .learning_rate = 0.1, |
34 | .max_iterations = 500, | 43 | .max_iterations = 500, |
35 | .seed = 0, | 44 | .seed = 0, |
36 | .weight_init = nnWeightInit01, | 45 | .weight_init = nnWeightInit01, |
37 | .debug = false, | 46 | .debug = false, |
38 | }; | 47 | }; |
39 | 48 | ||
40 | nnTrain(net, &inputs_matrix, &targets_matrix, ¶ms); | 49 | nnTrain(net, &inputs_matrix, &targets_matrix, ¶ms); |
41 | 50 | ||
42 | // Test. | 51 | // Test. |
43 | 52 | ||
44 | #define M 4 | 53 | #define M 4 |
45 | 54 | ||
46 | nnQueryObject* query = nnMakeQueryObject(net, /*num_inputs=*/M); | 55 | nnQueryObject* query = nnMakeQueryObject(net, M); |
47 | 56 | ||
48 | const R test_inputs[M][2] = { { 0., 0. }, { 1., 0. }, { 0., 1. }, { 1., 1. } }; | 57 | const R test_inputs[M][2] = { |
58 | {0., 0.}, | ||
59 | {1., 0.}, | ||
60 | {0., 1.}, | ||
61 | {1., 1.} | ||
62 | }; | ||
49 | nnMatrix test_inputs_matrix = nnMatrixMake(M, 2); | 63 | nnMatrix test_inputs_matrix = nnMatrixMake(M, 2); |
50 | nnMatrixInit(&test_inputs_matrix, (const R*)test_inputs); | 64 | nnMatrixInit(&test_inputs_matrix, (const R*)test_inputs); |
51 | nnQuery(net, query, &test_inputs_matrix); | 65 | nnQuery(net, query, &test_inputs_matrix); |
52 | 66 | ||
53 | const R expected_outputs[M] = { 0., 1., 1., 0. }; | 67 | const R expected_outputs[M] = {0., 1., 1., 0.}; |
54 | for (int i = 0; i < M; ++i) { | 68 | for (int i = 0; i < M; ++i) { |
55 | const R test_output = nnMatrixAt(nnNetOutputs(query), i, 0); | 69 | const R test_output = nnMatrixAt(nnNetOutputs(query), i, 0); |
56 | printf("\nInput: (%f, %f), Output: %f, Expected: %f\n", | 70 | printf( |
57 | test_inputs[i][0], test_inputs[i][1], test_output, expected_outputs[i]); | 71 | "\nInput: (%f, %f), Output: %f, Expected: %f\n", test_inputs[i][0], |
72 | test_inputs[i][1], test_output, expected_outputs[i]); | ||
58 | } | 73 | } |
59 | for (int i = 0; i < M; ++i) { | 74 | for (int i = 0; i < M; ++i) { |
60 | const R test_output = nnMatrixAt(nnNetOutputs(query), i, 0); | 75 | const R test_output = nnMatrixAt(nnNetOutputs(query), i, 0); |