1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
|
#include <neuralnet/train.h>
#include <neuralnet/matrix.h>
#include <neuralnet/neuralnet.h>
#include "activation.h"
#include "neuralnet_impl.h"
#include "test.h"
#include "test_util.h"
#include <assert.h>
TEST_CASE(neuralnet_train_linear_perceptron_test) {
const int num_layers = 1;
const int layer_sizes[] = { 1, 1 };
const nnActivation layer_activations[] = { nnIdentity };
nnNeuralNetwork* net = nnMakeNet(num_layers, layer_sizes, layer_activations);
assert(net);
// Train.
// Try to learn the Y=X line.
#define N 2
const R inputs[N] = { 0., 1. };
const R targets[N] = { 0., 1. };
nnMatrix inputs_matrix = nnMatrixMake(N, 1);
nnMatrix targets_matrix = nnMatrixMake(N, 1);
nnMatrixInit(&inputs_matrix, inputs);
nnMatrixInit(&targets_matrix, targets);
nnTrainingParams params = {
.learning_rate = 0.7,
.max_iterations = 10,
.seed = 0,
.weight_init = nnWeightInit01,
.debug = false,
};
nnTrain(net, &inputs_matrix, &targets_matrix, ¶ms);
const R weight = nnMatrixAt(&net->weights[0], 0, 0);
const R expected_weight = 1.0;
printf("\nTrained network weight: %f, Expected: %f\n", weight, expected_weight);
TEST_TRUE(double_eq(weight, expected_weight, WEIGHT_EPS));
// Test.
nnQueryObject* query = nnMakeQueryObject(net, /*num_inputs=*/1);
const R test_input[] = { 2.3 };
R test_output[1];
nnQueryArray(net, query, test_input, test_output);
const R expected_output = test_input[0];
printf("Output: %f, Expected: %f\n", test_output[0], expected_output);
TEST_TRUE(double_eq(test_output[0], expected_output, OUTPUT_EPS));
nnDeleteQueryObject(&query);
nnDeleteNet(&net);
}
|