1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
|
#include <neuralnet/train.h>
#include "activation.h"
#include "neuralnet_impl.h"
#include <neuralnet/matrix.h>
#include <neuralnet/neuralnet.h>
#include "test.h"
#include "test_util.h"
#include <assert.h>
TEST_CASE(neuralnet_train_sigmoid_test) {
const int num_layers = 2;
const int input_size = 1;
const nnLayer layers[] = {
{.type = nnLinear, .linear = {.input_size = 1, .output_size = 1}},
{.type = nnSigmoid},
};
nnNeuralNetwork* net = nnMakeNet(layers, num_layers, input_size);
assert(net);
// Train.
// Try to learn the sigmoid function.
#define N 3
R inputs[N];
R targets[N];
for (int i = 0; i < N; ++i) {
inputs[i] = lerp(-1, +1, (R)i / (R)(N - 1));
targets[i] = sigmoid(inputs[i]);
}
nnMatrix inputs_matrix = nnMatrixMake(N, 1);
nnMatrix targets_matrix = nnMatrixMake(N, 1);
nnMatrixInit(&inputs_matrix, inputs);
nnMatrixInit(&targets_matrix, targets);
nnTrainingParams params = {
.learning_rate = 0.9,
.max_iterations = 100,
.seed = 0,
.weight_init = nnWeightInit01,
.debug = false,
};
nnTrain(net, &inputs_matrix, &targets_matrix, ¶ms);
const R weight = nnMatrixAt(&net->layers[0].linear.weights, 0, 0);
const R expected_weight = 1.0;
printf(
"\nTrained network weight: %f, Expected: %f\n", weight, expected_weight);
TEST_TRUE(double_eq(weight, expected_weight, WEIGHT_EPS));
// Test.
nnQueryObject* query = nnMakeQueryObject(net, 1);
const R test_input[] = {0.3};
R test_output[1];
nnQueryArray(net, query, test_input, test_output);
const R expected_output = 0.574442516811659; // sigmoid(0.3)
printf("Output: %f, Expected: %f\n", test_output[0], expected_output);
TEST_TRUE(double_eq(test_output[0], expected_output, OUTPUT_EPS));
nnDeleteQueryObject(&query);
nnDeleteNet(&net);
}
|