diff options
Diffstat (limited to 'contrib/SDL-3.2.8/src/libm/e_pow.c')
| -rw-r--r-- | contrib/SDL-3.2.8/src/libm/e_pow.c | 348 |
1 files changed, 348 insertions, 0 deletions
diff --git a/contrib/SDL-3.2.8/src/libm/e_pow.c b/contrib/SDL-3.2.8/src/libm/e_pow.c new file mode 100644 index 0000000..d1a141e --- /dev/null +++ b/contrib/SDL-3.2.8/src/libm/e_pow.c | |||
| @@ -0,0 +1,348 @@ | |||
| 1 | #include "SDL_internal.h" | ||
| 2 | /* | ||
| 3 | * ==================================================== | ||
| 4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | ||
| 5 | * | ||
| 6 | * Developed at SunPro, a Sun Microsystems, Inc. business. | ||
| 7 | * Permission to use, copy, modify, and distribute this | ||
| 8 | * software is freely granted, provided that this notice | ||
| 9 | * is preserved. | ||
| 10 | * ==================================================== | ||
| 11 | */ | ||
| 12 | |||
| 13 | /* __ieee754_pow(x,y) return x**y | ||
| 14 | * | ||
| 15 | * n | ||
| 16 | * Method: Let x = 2 * (1+f) | ||
| 17 | * 1. Compute and return log2(x) in two pieces: | ||
| 18 | * log2(x) = w1 + w2, | ||
| 19 | * where w1 has 53-24 = 29 bit trailing zeros. | ||
| 20 | * 2. Perform y*log2(x) = n+y' by simulating muti-precision | ||
| 21 | * arithmetic, where |y'|<=0.5. | ||
| 22 | * 3. Return x**y = 2**n*exp(y'*log2) | ||
| 23 | * | ||
| 24 | * Special cases: | ||
| 25 | * 1. +-1 ** anything is 1.0 | ||
| 26 | * 2. +-1 ** +-INF is 1.0 | ||
| 27 | * 3. (anything) ** 0 is 1 | ||
| 28 | * 4. (anything) ** 1 is itself | ||
| 29 | * 5. (anything) ** NAN is NAN | ||
| 30 | * 6. NAN ** (anything except 0) is NAN | ||
| 31 | * 7. +-(|x| > 1) ** +INF is +INF | ||
| 32 | * 8. +-(|x| > 1) ** -INF is +0 | ||
| 33 | * 9. +-(|x| < 1) ** +INF is +0 | ||
| 34 | * 10 +-(|x| < 1) ** -INF is +INF | ||
| 35 | * 11. +0 ** (+anything except 0, NAN) is +0 | ||
| 36 | * 12. -0 ** (+anything except 0, NAN, odd integer) is +0 | ||
| 37 | * 13. +0 ** (-anything except 0, NAN) is +INF | ||
| 38 | * 14. -0 ** (-anything except 0, NAN, odd integer) is +INF | ||
| 39 | * 15. -0 ** (odd integer) = -( +0 ** (odd integer) ) | ||
| 40 | * 16. +INF ** (+anything except 0,NAN) is +INF | ||
| 41 | * 17. +INF ** (-anything except 0,NAN) is +0 | ||
| 42 | * 18. -INF ** (anything) = -0 ** (-anything) | ||
| 43 | * 19. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) | ||
| 44 | * 20. (-anything except 0 and inf) ** (non-integer) is NAN | ||
| 45 | * | ||
| 46 | * Accuracy: | ||
| 47 | * pow(x,y) returns x**y nearly rounded. In particular | ||
| 48 | * pow(integer,integer) | ||
| 49 | * always returns the correct integer provided it is | ||
| 50 | * representable. | ||
| 51 | * | ||
| 52 | * Constants : | ||
| 53 | * The hexadecimal values are the intended ones for the following | ||
| 54 | * constants. The decimal values may be used, provided that the | ||
| 55 | * compiler will convert from decimal to binary accurately enough | ||
| 56 | * to produce the hexadecimal values shown. | ||
| 57 | */ | ||
| 58 | |||
| 59 | #include "math_libm.h" | ||
| 60 | #include "math_private.h" | ||
| 61 | |||
| 62 | #if defined(_MSC_VER) /* Handle Microsoft VC++ compiler specifics. */ | ||
| 63 | /* C4756: overflow in constant arithmetic */ | ||
| 64 | #pragma warning ( disable : 4756 ) | ||
| 65 | #endif | ||
| 66 | |||
| 67 | #ifdef __WATCOMC__ /* Watcom defines huge=__huge */ | ||
| 68 | #undef huge | ||
| 69 | #endif | ||
| 70 | |||
| 71 | static const double | ||
| 72 | bp[] = {1.0, 1.5,}, | ||
| 73 | dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */ | ||
| 74 | dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */ | ||
| 75 | zero = 0.0, | ||
| 76 | one = 1.0, | ||
| 77 | two = 2.0, | ||
| 78 | two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */ | ||
| 79 | huge = 1.0e300, | ||
| 80 | tiny = 1.0e-300, | ||
| 81 | /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */ | ||
| 82 | L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */ | ||
| 83 | L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */ | ||
| 84 | L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */ | ||
| 85 | L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */ | ||
| 86 | L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */ | ||
| 87 | L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */ | ||
| 88 | P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ | ||
| 89 | P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ | ||
| 90 | P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ | ||
| 91 | P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ | ||
| 92 | P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */ | ||
| 93 | lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ | ||
| 94 | lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */ | ||
| 95 | lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */ | ||
| 96 | ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */ | ||
| 97 | cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */ | ||
| 98 | cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */ | ||
| 99 | cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/ | ||
| 100 | ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */ | ||
| 101 | ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/ | ||
| 102 | ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/ | ||
| 103 | |||
| 104 | double attribute_hidden __ieee754_pow(double x, double y) | ||
| 105 | { | ||
| 106 | double z,ax,z_h,z_l,p_h,p_l; | ||
| 107 | double y1,t1,t2,r,s,t,u,v,w; | ||
| 108 | int32_t i,j,k,yisint,n; | ||
| 109 | int32_t hx,hy,ix,iy; | ||
| 110 | u_int32_t lx,ly; | ||
| 111 | |||
| 112 | EXTRACT_WORDS(hx,lx,x); | ||
| 113 | /* x==1: 1**y = 1 (even if y is NaN) */ | ||
| 114 | if (hx==0x3ff00000 && lx==0) { | ||
| 115 | return x; | ||
| 116 | } | ||
| 117 | ix = hx&0x7fffffff; | ||
| 118 | |||
| 119 | EXTRACT_WORDS(hy,ly,y); | ||
| 120 | iy = hy&0x7fffffff; | ||
| 121 | |||
| 122 | /* y==zero: x**0 = 1 */ | ||
| 123 | if((iy|ly)==0) return one; | ||
| 124 | |||
| 125 | /* +-NaN return x+y */ | ||
| 126 | if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) || | ||
| 127 | iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0))) | ||
| 128 | return x+y; | ||
| 129 | |||
| 130 | /* determine if y is an odd int when x < 0 | ||
| 131 | * yisint = 0 ... y is not an integer | ||
| 132 | * yisint = 1 ... y is an odd int | ||
| 133 | * yisint = 2 ... y is an even int | ||
| 134 | */ | ||
| 135 | yisint = 0; | ||
| 136 | if(hx<0) { | ||
| 137 | if(iy>=0x43400000) yisint = 2; /* even integer y */ | ||
| 138 | else if(iy>=0x3ff00000) { | ||
| 139 | k = (iy>>20)-0x3ff; /* exponent */ | ||
| 140 | if(k>20) { | ||
| 141 | j = ly>>(52-k); | ||
| 142 | if(((u_int32_t)j<<(52-k))==ly) yisint = 2-(j&1); | ||
| 143 | } else if(ly==0) { | ||
| 144 | j = iy>>(20-k); | ||
| 145 | if((j<<(20-k))==iy) yisint = 2-(j&1); | ||
| 146 | } | ||
| 147 | } | ||
| 148 | } | ||
| 149 | |||
| 150 | /* special value of y */ | ||
| 151 | if(ly==0) { | ||
| 152 | if (iy==0x7ff00000) { /* y is +-inf */ | ||
| 153 | if (((ix-0x3ff00000)|lx)==0) | ||
| 154 | return one; /* +-1**+-inf is 1 (yes, weird rule) */ | ||
| 155 | if (ix >= 0x3ff00000) /* (|x|>1)**+-inf = inf,0 */ | ||
| 156 | return (hy>=0) ? y : zero; | ||
| 157 | /* (|x|<1)**-,+inf = inf,0 */ | ||
| 158 | return (hy<0) ? -y : zero; | ||
| 159 | } | ||
| 160 | if(iy==0x3ff00000) { /* y is +-1 */ | ||
| 161 | if(hy<0) return one/x; else return x; | ||
| 162 | } | ||
| 163 | if(hy==0x40000000) return x*x; /* y is 2 */ | ||
| 164 | if(hy==0x3fe00000) { /* y is 0.5 */ | ||
| 165 | if(hx>=0) /* x >= +0 */ | ||
| 166 | return __ieee754_sqrt(x); | ||
| 167 | } | ||
| 168 | } | ||
| 169 | |||
| 170 | ax = fabs(x); | ||
| 171 | /* special value of x */ | ||
| 172 | if(lx==0) { | ||
| 173 | if(ix==0x7ff00000||ix==0||ix==0x3ff00000){ | ||
| 174 | z = ax; /*x is +-0,+-inf,+-1*/ | ||
| 175 | if(hy<0) z = one/z; /* z = (1/|x|) */ | ||
| 176 | if(hx<0) { | ||
| 177 | if(((ix-0x3ff00000)|yisint)==0) { | ||
| 178 | z = (z-z)/(z-z); /* (-1)**non-int is NaN */ | ||
| 179 | } else if(yisint==1) | ||
| 180 | z = -z; /* (x<0)**odd = -(|x|**odd) */ | ||
| 181 | } | ||
| 182 | return z; | ||
| 183 | } | ||
| 184 | } | ||
| 185 | |||
| 186 | /* (x<0)**(non-int) is NaN */ | ||
| 187 | if(((((u_int32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x); | ||
| 188 | |||
| 189 | /* |y| is huge */ | ||
| 190 | if(iy>0x41e00000) { /* if |y| > 2**31 */ | ||
| 191 | if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */ | ||
| 192 | if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny; | ||
| 193 | if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny; | ||
| 194 | } | ||
| 195 | /* over/underflow if x is not close to one */ | ||
| 196 | if(ix<0x3fefffff) return (hy<0)? huge*huge:tiny*tiny; | ||
| 197 | if(ix>0x3ff00000) return (hy>0)? huge*huge:tiny*tiny; | ||
| 198 | /* now |1-x| is tiny <= 2**-20, suffice to compute | ||
| 199 | log(x) by x-x^2/2+x^3/3-x^4/4 */ | ||
| 200 | t = x-1; /* t has 20 trailing zeros */ | ||
| 201 | w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25)); | ||
| 202 | u = ivln2_h*t; /* ivln2_h has 21 sig. bits */ | ||
| 203 | v = t*ivln2_l-w*ivln2; | ||
| 204 | t1 = u+v; | ||
| 205 | SET_LOW_WORD(t1,0); | ||
| 206 | t2 = v-(t1-u); | ||
| 207 | } else { | ||
| 208 | double s2,s_h,s_l,t_h,t_l; | ||
| 209 | n = 0; | ||
| 210 | /* take care subnormal number */ | ||
| 211 | if(ix<0x00100000) | ||
| 212 | {ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); } | ||
| 213 | n += ((ix)>>20)-0x3ff; | ||
| 214 | j = ix&0x000fffff; | ||
| 215 | /* determine interval */ | ||
| 216 | ix = j|0x3ff00000; /* normalize ix */ | ||
| 217 | if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */ | ||
| 218 | else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */ | ||
| 219 | else {k=0;n+=1;ix -= 0x00100000;} | ||
| 220 | SET_HIGH_WORD(ax,ix); | ||
| 221 | |||
| 222 | /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ | ||
| 223 | u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ | ||
| 224 | v = one/(ax+bp[k]); | ||
| 225 | s = u*v; | ||
| 226 | s_h = s; | ||
| 227 | SET_LOW_WORD(s_h,0); | ||
| 228 | /* t_h=ax+bp[k] High */ | ||
| 229 | t_h = zero; | ||
| 230 | SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18)); | ||
| 231 | t_l = ax - (t_h-bp[k]); | ||
| 232 | s_l = v*((u-s_h*t_h)-s_h*t_l); | ||
| 233 | /* compute log(ax) */ | ||
| 234 | s2 = s*s; | ||
| 235 | r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6))))); | ||
| 236 | r += s_l*(s_h+s); | ||
| 237 | s2 = s_h*s_h; | ||
| 238 | t_h = 3.0+s2+r; | ||
| 239 | SET_LOW_WORD(t_h,0); | ||
| 240 | t_l = r-((t_h-3.0)-s2); | ||
| 241 | /* u+v = s*(1+...) */ | ||
| 242 | u = s_h*t_h; | ||
| 243 | v = s_l*t_h+t_l*s; | ||
| 244 | /* 2/(3log2)*(s+...) */ | ||
| 245 | p_h = u+v; | ||
| 246 | SET_LOW_WORD(p_h,0); | ||
| 247 | p_l = v-(p_h-u); | ||
| 248 | z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */ | ||
| 249 | z_l = cp_l*p_h+p_l*cp+dp_l[k]; | ||
| 250 | /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */ | ||
| 251 | t = (double)n; | ||
| 252 | t1 = (((z_h+z_l)+dp_h[k])+t); | ||
| 253 | SET_LOW_WORD(t1,0); | ||
| 254 | t2 = z_l-(((t1-t)-dp_h[k])-z_h); | ||
| 255 | } | ||
| 256 | |||
| 257 | s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ | ||
| 258 | if(((((u_int32_t)hx>>31)-1)|(yisint-1))==0) | ||
| 259 | s = -one;/* (-ve)**(odd int) */ | ||
| 260 | |||
| 261 | /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ | ||
| 262 | y1 = y; | ||
| 263 | SET_LOW_WORD(y1,0); | ||
| 264 | p_l = (y-y1)*t1+y*t2; | ||
| 265 | p_h = y1*t1; | ||
| 266 | z = p_l+p_h; | ||
| 267 | EXTRACT_WORDS(j,i,z); | ||
| 268 | if (j>=0x40900000) { /* z >= 1024 */ | ||
| 269 | if(((j-0x40900000)|i)!=0) /* if z > 1024 */ | ||
| 270 | return s*huge*huge; /* overflow */ | ||
| 271 | else { | ||
| 272 | if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */ | ||
| 273 | } | ||
| 274 | } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */ | ||
| 275 | if(((j-0xc090cc00)|i)!=0) /* z < -1075 */ | ||
| 276 | return s*tiny*tiny; /* underflow */ | ||
| 277 | else { | ||
| 278 | if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */ | ||
| 279 | } | ||
| 280 | } | ||
| 281 | /* | ||
| 282 | * compute 2**(p_h+p_l) | ||
| 283 | */ | ||
| 284 | i = j&0x7fffffff; | ||
| 285 | k = (i>>20)-0x3ff; | ||
| 286 | n = 0; | ||
| 287 | if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */ | ||
| 288 | n = j+(0x00100000>>(k+1)); | ||
| 289 | k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */ | ||
| 290 | t = zero; | ||
| 291 | SET_HIGH_WORD(t,n&~(0x000fffff>>k)); | ||
| 292 | n = ((n&0x000fffff)|0x00100000)>>(20-k); | ||
| 293 | if(j<0) n = -n; | ||
| 294 | p_h -= t; | ||
| 295 | } | ||
| 296 | t = p_l+p_h; | ||
| 297 | SET_LOW_WORD(t,0); | ||
| 298 | u = t*lg2_h; | ||
| 299 | v = (p_l-(t-p_h))*lg2+t*lg2_l; | ||
| 300 | z = u+v; | ||
| 301 | w = v-(z-u); | ||
| 302 | t = z*z; | ||
| 303 | t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); | ||
| 304 | r = (z*t1)/(t1-two)-(w+z*w); | ||
| 305 | z = one-(r-z); | ||
| 306 | GET_HIGH_WORD(j,z); | ||
| 307 | j += (n<<20); | ||
| 308 | if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */ | ||
| 309 | else SET_HIGH_WORD(z,j); | ||
| 310 | return s*z; | ||
| 311 | } | ||
| 312 | |||
| 313 | /* | ||
| 314 | * wrapper pow(x,y) return x**y | ||
| 315 | */ | ||
| 316 | #ifndef _IEEE_LIBM | ||
| 317 | double pow(double x, double y) | ||
| 318 | { | ||
| 319 | double z = __ieee754_pow(x, y); | ||
| 320 | if (_LIB_VERSION == _IEEE_|| isnan(y)) | ||
| 321 | return z; | ||
| 322 | if (isnan(x)) { | ||
| 323 | if (y == 0.0) | ||
| 324 | return __kernel_standard(x, y, 42); /* pow(NaN,0.0) */ | ||
| 325 | return z; | ||
| 326 | } | ||
| 327 | if (x == 0.0) { | ||
| 328 | if (y == 0.0) | ||
| 329 | return __kernel_standard(x, y, 20); /* pow(0.0,0.0) */ | ||
| 330 | if (isfinite(y) && y < 0.0) | ||
| 331 | return __kernel_standard(x,y,23); /* pow(0.0,negative) */ | ||
| 332 | return z; | ||
| 333 | } | ||
| 334 | if (!isfinite(z)) { | ||
| 335 | if (isfinite(x) && isfinite(y)) { | ||
| 336 | if (isnan(z)) | ||
| 337 | return __kernel_standard(x, y, 24); /* pow neg**non-int */ | ||
| 338 | return __kernel_standard(x, y, 21); /* pow overflow */ | ||
| 339 | } | ||
| 340 | } | ||
| 341 | if (z == 0.0 && isfinite(x) && isfinite(y)) | ||
| 342 | return __kernel_standard(x, y, 22); /* pow underflow */ | ||
| 343 | return z; | ||
| 344 | } | ||
| 345 | #else | ||
| 346 | strong_alias(__ieee754_pow, pow) | ||
| 347 | #endif | ||
| 348 | libm_hidden_def(pow) | ||
