summaryrefslogtreecommitdiff
path: root/src/contrib/SDL-2.30.2/docs/README-android.md
blob: b886f06db5d83eba29fe5ca4a8bbccc431f5b098 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
Android
================================================================================

Matt Styles wrote a tutorial on building SDL for Android with Visual Studio:
http://trederia.blogspot.de/2017/03/building-sdl2-for-android-with-visual.html

The rest of this README covers the Android gradle style build process.

If you are using the older ant build process, it is no longer officially
supported, but you can use the "android-project-ant" directory as a template.


Requirements
================================================================================

Android SDK (version 34 or later)
https://developer.android.com/sdk/index.html

Android NDK r15c or later
https://developer.android.com/tools/sdk/ndk/index.html

Minimum API level supported by SDL: 19 (Android 4.4)


How the port works
================================================================================

- Android applications are Java-based, optionally with parts written in C
- As SDL apps are C-based, we use a small Java shim that uses JNI to talk to
  the SDL library
- This means that your application C code must be placed inside an Android
  Java project, along with some C support code that communicates with Java
- This eventually produces a standard Android .apk package

The Android Java code implements an "Activity" and can be found in:
android-project/app/src/main/java/org/libsdl/app/SDLActivity.java

The Java code loads your game code, the SDL shared library, and
dispatches to native functions implemented in the SDL library:
src/core/android/SDL_android.c


Building an app
================================================================================

For simple projects you can use the script located at build-scripts/androidbuild.sh

There's two ways of using it:

    androidbuild.sh com.yourcompany.yourapp < sources.list
    androidbuild.sh com.yourcompany.yourapp source1.c source2.c ...sourceN.c

sources.list should be a text file with a source file name in each line
Filenames should be specified relative to the current directory, for example if
you are in the build-scripts directory and want to create the testgles.c test, you'll
run:

    ./androidbuild.sh org.libsdl.testgles ../test/testgles.c

One limitation of this script is that all sources provided will be aggregated into
a single directory, thus all your source files should have a unique name.

Once the project is complete the script will tell you where the debug APK is located.
If you want to create a signed release APK, you can use the project created by this
utility to generate it.

Finally, a word of caution: re running androidbuild.sh wipes any changes you may have
done in the build directory for the app!



For more complex projects, follow these instructions:

1. Get the source code for SDL and copy the 'android-project' directory located at SDL/android-project to a suitable location. Also make sure to rename it to your project name (In these examples: YOURPROJECT).

   (The 'android-project' directory can basically be seen as a sort of starting point for the android-port of your project. It contains the glue code between the Android Java 'frontend' and the SDL code 'backend'. It also contains some standard behaviour, like how events should be handled, which you will be able to change.)

2. Move or [symlink](https://en.wikipedia.org/wiki/Symbolic_link) the SDL directory into the "YOURPROJECT/app/jni" directory

(This is needed as the source of SDL has to be compiled by the Android compiler)

3. Edit "YOURPROJECT/app/jni/src/Android.mk" to include your source files.

(They should be separated by spaces after the "LOCAL_SRC_FILES := " declaration)

4a. If you want to use Android Studio, simply open your 'YOURPROJECT' directory and start building.

4b. If you want to build manually, run './gradlew installDebug' in the project directory. This compiles the .java, creates an .apk with the native code embedded, and installs it on any connected Android device


If you already have a project that uses CMake, the instructions change somewhat:

1. Do points 1 and 2 from the instruction above.
2. Edit "YOURPROJECT/app/build.gradle" to comment out or remove sections containing ndk-build
   and uncomment the cmake sections. Add arguments to the CMake invocation as needed.
3. Edit "YOURPROJECT/app/jni/CMakeLists.txt" to include your project (it defaults to
   adding the "src" subdirectory). Note that you'll have SDL2, SDL2main and SDL2-static
   as targets in your project, so you should have "target_link_libraries(yourgame SDL2 SDL2main)"
   in your CMakeLists.txt file. Also be aware that you should use add_library() instead of
   add_executable() for the target containing your "main" function.

If you wish to use Android Studio, you can skip the last step.

4. Run './gradlew installDebug' or './gradlew installRelease' in the project directory. It will build and install your .apk on any
   connected Android device

Here's an explanation of the files in the Android project, so you can customize them:

    android-project/app
        build.gradle            - build info including the application version and SDK
        src/main/AndroidManifest.xml	- package manifest. Among others, it contains the class name of the main Activity and the package name of the application.
        jni/			- directory holding native code
        jni/Application.mk	- Application JNI settings, including target platform and STL library
        jni/Android.mk		- Android makefile that can call recursively the Android.mk files in all subdirectories
        jni/CMakeLists.txt	- Top-level CMake project that adds SDL as a subproject
        jni/SDL/		- (symlink to) directory holding the SDL library files
        jni/SDL/Android.mk	- Android makefile for creating the SDL shared library
        jni/src/		- directory holding your C/C++ source
        jni/src/Android.mk	- Android makefile that you should customize to include your source code and any library references
        jni/src/CMakeLists.txt	- CMake file that you may customize to include your source code and any library references
        src/main/assets/	- directory holding asset files for your application
        src/main/res/		- directory holding resources for your application
        src/main/res/mipmap-*	- directories holding icons for different phone hardware
        src/main/res/values/strings.xml	- strings used in your application, including the application name
        src/main/java/org/libsdl/app/SDLActivity.java - the Java class handling the initialization and binding to SDL. Be very careful changing this, as the SDL library relies on this implementation. You should instead subclass this for your application.


Customizing your application name
================================================================================

To customize your application name, edit AndroidManifest.xml and replace
"org.libsdl.app" with an identifier for your product package.

Then create a Java class extending SDLActivity and place it in a directory
under src matching your package, e.g.

    src/com/gamemaker/game/MyGame.java

Here's an example of a minimal class file:

    --- MyGame.java --------------------------
    package com.gamemaker.game;

    import org.libsdl.app.SDLActivity;

    /**
     * A sample wrapper class that just calls SDLActivity
     */

    public class MyGame extends SDLActivity { }

    ------------------------------------------

Then replace "SDLActivity" in AndroidManifest.xml with the name of your
class, .e.g. "MyGame"


Customizing your application icon
================================================================================

Conceptually changing your icon is just replacing the "ic_launcher.png" files in
the drawable directories under the res directory. There are several directories
for different screen sizes.


Loading assets
================================================================================

Any files you put in the "app/src/main/assets" directory of your project
directory will get bundled into the application package and you can load
them using the standard functions in SDL_rwops.h.

There are also a few Android specific functions that allow you to get other
useful paths for saving and loading data:
* SDL_AndroidGetInternalStoragePath()
* SDL_AndroidGetExternalStorageState()
* SDL_AndroidGetExternalStoragePath()

See SDL_system.h for more details on these functions.

The asset packaging system will, by default, compress certain file extensions.
SDL includes two asset file access mechanisms, the preferred one is the so
called "File Descriptor" method, which is faster and doesn't involve the Dalvik
GC, but given this method does not work on compressed assets, there is also the
"Input Stream" method, which is automatically used as a fall back by SDL. You
may want to keep this fact in mind when building your APK, specially when large
files are involved.
For more information on which extensions get compressed by default and how to
disable this behaviour, see for example:

http://ponystyle.com/blog/2010/03/26/dealing-with-asset-compression-in-android-apps/


Pause / Resume behaviour
================================================================================

If SDL_HINT_ANDROID_BLOCK_ON_PAUSE hint is set (the default),
the event loop will block itself when the app is paused (ie, when the user
returns to the main Android dashboard). Blocking is better in terms of battery
use, and it allows your app to spring back to life instantaneously after resume
(versus polling for a resume message).

Upon resume, SDL will attempt to restore the GL context automatically.
In modern devices (Android 3.0 and up) this will most likely succeed and your
app can continue to operate as it was.

However, there's a chance (on older hardware, or on systems under heavy load),
where the GL context can not be restored. In that case you have to listen for
a specific message (SDL_RENDER_DEVICE_RESET) and restore your textures
manually or quit the app.

You should not use the SDL renderer API while the app going in background:
- SDL_APP_WILLENTERBACKGROUND:
    after you read this message, GL context gets backed-up and you should not
    use the SDL renderer API.

    When this event is received, you have to set the render target to NULL, if you're using it.
    (eg call SDL_SetRenderTarget(renderer, NULL))

- SDL_APP_DIDENTERFOREGROUND:
   GL context is restored, and the SDL renderer API is available (unless you
   receive SDL_RENDER_DEVICE_RESET).

Mouse / Touch events
================================================================================

In some case, SDL generates synthetic mouse (resp. touch) events for touch
(resp. mouse) devices.
To enable/disable this behavior, see SDL_hints.h:
- SDL_HINT_TOUCH_MOUSE_EVENTS
- SDL_HINT_MOUSE_TOUCH_EVENTS

Misc
================================================================================

For some device, it appears to works better setting explicitly GL attributes
before creating a window:
  SDL_GL_SetAttribute(SDL_GL_RED_SIZE, 5);
  SDL_GL_SetAttribute(SDL_GL_GREEN_SIZE, 6);
  SDL_GL_SetAttribute(SDL_GL_BLUE_SIZE, 5);

Threads and the Java VM
================================================================================

For a quick tour on how Linux native threads interoperate with the Java VM, take
a look here: https://developer.android.com/guide/practices/jni.html

If you want to use threads in your SDL app, it's strongly recommended that you
do so by creating them using SDL functions. This way, the required attach/detach
handling is managed by SDL automagically. If you have threads created by other
means and they make calls to SDL functions, make sure that you call
Android_JNI_SetupThread() before doing anything else otherwise SDL will attach
your thread automatically anyway (when you make an SDL call), but it'll never
detach it.


If you ever want to use JNI in a native thread (created by "SDL_CreateThread()"),
it won't be able to find your java class and method because of the java class loader
which is different for native threads, than for java threads (eg your "main()").

the work-around is to find class/method, in you "main()" thread, and to use them
in your native thread.

see:
https://developer.android.com/training/articles/perf-jni#faq:-why-didnt-findclass-find-my-class

Using STL
================================================================================

You can use STL in your project by creating an Application.mk file in the jni
folder and adding the following line:

    APP_STL := c++_shared

For more information go here:
	https://developer.android.com/ndk/guides/cpp-support


Using the emulator
================================================================================

There are some good tips and tricks for getting the most out of the
emulator here: https://developer.android.com/tools/devices/emulator.html

Especially useful is the info on setting up OpenGL ES 2.0 emulation.

Notice that this software emulator is incredibly slow and needs a lot of disk space.
Using a real device works better.


Troubleshooting
================================================================================

You can see if adb can see any devices with the following command:

    adb devices

You can see the output of log messages on the default device with:

    adb logcat

You can push files to the device with:

    adb push local_file remote_path_and_file

You can push files to the SD Card at /sdcard, for example:

    adb push moose.dat /sdcard/moose.dat

You can see the files on the SD card with a shell command:

    adb shell ls /sdcard/

You can start a command shell on the default device with:

    adb shell

You can remove the library files of your project (and not the SDL lib files) with:

    ndk-build clean

You can do a build with the following command:

    ndk-build

You can see the complete command line that ndk-build is using by passing V=1 on the command line:

    ndk-build V=1

If your application crashes in native code, you can use ndk-stack to get a symbolic stack trace:
	https://developer.android.com/ndk/guides/ndk-stack

If you want to go through the process manually, you can use addr2line to convert the
addresses in the stack trace to lines in your code.

For example, if your crash looks like this:

    I/DEBUG   (   31): signal 11 (SIGSEGV), code 2 (SEGV_ACCERR), fault addr 400085d0
    I/DEBUG   (   31):  r0 00000000  r1 00001000  r2 00000003  r3 400085d4
    I/DEBUG   (   31):  r4 400085d0  r5 40008000  r6 afd41504  r7 436c6a7c
    I/DEBUG   (   31):  r8 436c6b30  r9 435c6fb0  10 435c6f9c  fp 4168d82c
    I/DEBUG   (   31):  ip 8346aff0  sp 436c6a60  lr afd1c8ff  pc afd1c902  cpsr 60000030
    I/DEBUG   (   31):          #00  pc 0001c902  /system/lib/libc.so
    I/DEBUG   (   31):          #01  pc 0001ccf6  /system/lib/libc.so
    I/DEBUG   (   31):          #02  pc 000014bc  /data/data/org.libsdl.app/lib/libmain.so
    I/DEBUG   (   31):          #03  pc 00001506  /data/data/org.libsdl.app/lib/libmain.so

You can see that there's a crash in the C library being called from the main code.
I run addr2line with the debug version of my code:

    arm-eabi-addr2line -C -f -e obj/local/armeabi/libmain.so

and then paste in the number after "pc" in the call stack, from the line that I care about:
000014bc

I get output from addr2line showing that it's in the quit function, in testspriteminimal.c, on line 23.

You can add logging to your code to help show what's happening:

    #include <android/log.h>

    __android_log_print(ANDROID_LOG_INFO, "foo", "Something happened! x = %d", x);

If you need to build without optimization turned on, you can create a file called
"Application.mk" in the jni directory, with the following line in it:

    APP_OPTIM := debug


Memory debugging
================================================================================

The best (and slowest) way to debug memory issues on Android is valgrind.
Valgrind has support for Android out of the box, just grab code using:

    svn co svn://svn.valgrind.org/valgrind/trunk valgrind

... and follow the instructions in the file README.android to build it.

One thing I needed to do on Mac OS X was change the path to the toolchain,
and add ranlib to the environment variables:
export RANLIB=$NDKROOT/toolchains/arm-linux-androideabi-4.4.3/prebuilt/darwin-x86/bin/arm-linux-androideabi-ranlib

Once valgrind is built, you can create a wrapper script to launch your
application with it, changing org.libsdl.app to your package identifier:

    --- start_valgrind_app -------------------
    #!/system/bin/sh
    export TMPDIR=/data/data/org.libsdl.app
    exec /data/local/Inst/bin/valgrind --log-file=/sdcard/valgrind.log --error-limit=no $*
    ------------------------------------------

Then push it to the device:

    adb push start_valgrind_app /data/local

and make it executable:

    adb shell chmod 755 /data/local/start_valgrind_app

and tell Android to use the script to launch your application:

    adb shell setprop wrap.org.libsdl.app "logwrapper /data/local/start_valgrind_app"

If the setprop command says "could not set property", it's likely that
your package name is too long and you should make it shorter by changing
AndroidManifest.xml and the path to your class file in android-project/src

You can then launch your application normally and waaaaaaaiiittt for it.
You can monitor the startup process with the logcat command above, and
when it's done (or even while it's running) you can grab the valgrind
output file:

    adb pull /sdcard/valgrind.log

When you're done instrumenting with valgrind, you can disable the wrapper:

    adb shell setprop wrap.org.libsdl.app ""


Graphics debugging
================================================================================

If you are developing on a compatible Tegra-based tablet, NVidia provides
Tegra Graphics Debugger at their website. Because SDL2 dynamically loads EGL
and GLES libraries, you must follow their instructions for installing the
interposer library on a rooted device. The non-rooted instructions are not
compatible with applications that use SDL2 for video.

The Tegra Graphics Debugger is available from NVidia here:
https://developer.nvidia.com/tegra-graphics-debugger


Why is API level 19 the minimum required?
================================================================================

The latest NDK toolchain doesn't support targeting earlier than API level 19.
As of this writing, according to https://www.composables.com/tools/distribution-chart
about 99.7% of the Android devices accessing Google Play support API level 19 or
higher (August 2023).


A note regarding the use of the "dirty rectangles" rendering technique
================================================================================

If your app uses a variation of the "dirty rectangles" rendering technique,
where you only update a portion of the screen on each frame, you may notice a
variety of visual glitches on Android, that are not present on other platforms.
This is caused by SDL's use of EGL as the support system to handle OpenGL ES/ES2
contexts, in particular the use of the eglSwapBuffers function. As stated in the
documentation for the function "The contents of ancillary buffers are always
undefined after calling eglSwapBuffers".
Setting the EGL_SWAP_BEHAVIOR attribute of the surface to EGL_BUFFER_PRESERVED
is not possible for SDL as it requires EGL 1.4, available only on the API level
17+, so the only workaround available on this platform is to redraw the entire
screen each frame.

Reference: http://www.khronos.org/registry/egl/specs/EGLTechNote0001.html


Ending your application
================================================================================

Two legitimate ways:

- return from your main() function. Java side will automatically terminate the
Activity by calling Activity.finish().

- Android OS can decide to terminate your application by calling onDestroy()
(see Activity life cycle). Your application will receive a SDL_QUIT event you
can handle to save things and quit.

Don't call exit() as it stops the activity badly.

NB: "Back button" can be handled as a SDL_KEYDOWN/UP events, with Keycode
SDLK_AC_BACK, for any purpose.

Known issues
================================================================================

- The number of buttons reported for each joystick is hardcoded to be 36, which
is the current maximum number of buttons Android can report.